新一代人工智能发展方向及技术框架

导语:随着信息时代的来临,人类生产生活的数据基础和信息环境有了大幅提升,人工智能正从学术驱动转变为应用驱动

新一代人工智能发展方向

人工智能发轫于1956年在美国达特茅斯(Dartmouth)学院举行的“人工智能(ArtificialIntelligent,简称AI)夏季研讨会”,在20世纪50年代末和80年代初先后步入两次发展高峰,但因为技术瓶颈、应用成本等局限性而均落入低谷。当前,在新一代信息技术的引领下,数据快速积累,运算能力大幅提升,算法模型持续演进,行业应用快速兴起,人工智能发展环境发生了深刻变化,跨媒体智能、群体智能、自主智能系统、混合型智能成为新的发展方向,人工智能第三次站在了科技发展的浪潮之巅。

(一)人工智能简要发展历程

1、第一次浪潮:人工智能诞生并快速发展,但技术瓶颈难以突破。

模型存在局限,人工智能步入低谷。1974年到1980年。人工智能的瓶颈逐渐显现,逻辑证明器、感知器、增强学习只能完成指定的工作,对于超出范围的任务则无法应对,智能水平较为低级,局限性较为突出。造成这种局限的原因主要体现在两个方面:一是人工智能所基于的数学模型和数学手段被发现具有一定的缺陷;二是很多计算的复杂度呈指数级增长,依据现有算法无法完成计算任务。先天的缺陷是人工智能在早期发展过程中遇到的瓶颈,研发机构对人工智能的热情逐渐冷却,对人工智能的资助也相应被缩减或取消,人工智能第一次步入低谷。

2、第二次浪潮:模型突破带动初步产业化,但推广应用存在成本障碍。

成本高且难维护,人工智能再次步入低谷。为推动人工智能的发展,研究者设计了LISP语言,并针对该语言研制了Lisp计算机。该机型指令执行效率比通用型计算机更高,但价格昂贵且难以维护,始终难以大范围推广普及。与此同时,在1987年到1993年间,苹果和IBM公司开始推广第一代台式机,随着性能不断提升和销售价格的不断降低,这些个人电脑逐渐在消费市场上占据了优势,越来越多的计算机走入个人家庭,价格昂贵的Lisp计算机由于古老陈旧且难以维护逐渐被市场淘汰,专家系统也逐渐淡出人们的视野,人工智能硬件市场出现明显萎缩。同时,政府经费开始下降,人工智能又一次步入低谷。

3、第三次浪潮:信息时代催生新一代人工智能,但未来发展存在诸多隐忧。

新兴技术快速涌现,人工智能发展进入新阶段。随着互联网的普及、传感器的泛在、大数据的涌现、电子商务的发展、信息社区的兴起,数据和知识在人类社会、物理空间和信息空间之间交叉融合、相互作用,人工智能发展所处信息环境和数据基础发生了巨大而深刻的变化,这些变化构成了驱动人工智能走向新阶段的外在动力。与此同时,人工智能的目标和理念出现重要调整,科学基础和实现载体取得新的突破,类脑计算、深度学习、强化学习等一系列的技术萌芽也预示着内在动力的成长,人工智能的发展已经进入一个新的阶段。

人工智能水平快速提升,人类面临潜在隐患。得益于数据量的快速增长、计算能力的大幅提升以及机器学习算法的持续优化,新一代人工智能在某些给定任务中已经展现出达到或超越人类的工作能力,并逐渐从专用型智能向通用型智能过渡,有望发展为抽象型智能。随着应用范围的不断拓展,人工智能与人类生产生活联系的愈发紧密,一方面给人们带来诸多便利,另一方面也产生了一些潜在问题:一是加速机器换人,结构性失业可能更为严重;二是隐私保护成为难点,数据拥有权、隐私权、许可权等界定存在困难。

(二)新一代人工智能的主要驱动因素

当前,随着移动互联网、大数据、云计算等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。人工智能发展所处的信息环境和数据基础发生了深刻变化,愈加海量化的数据、持续提升的运算力、不断优化的算法模型、结合多种场景的新应用已构成相对完整的闭环,成为推动新一代人工智能发展的四大要素,如图2所示。

1、人机物互联互通成趋势,数据量呈现爆炸性增长

近年来,得益于互联网、社交媒体、移动设备和传感器的大量普及,全球产生并存储的数据量急剧增加,为通过深度学习的方法来训练人工智能提供了良好的土壤。目前,全球数据总量每年都以倍增的速度增长,预计到2020年将达到44万亿GB,中国产生的数据量将占全球数据总量的近20%。海量的数据将为人工智能算法模型提供源源不断的素材,人工智能正从监督式学习向无监督学习演进升级,从各行业、各领域的海量数据中积累经验、发现规律、持续提升。

2、数据处理技术加速演进,运算能力实现大幅提升

人工智能领域富集了海量数据,传统的数据处理技术难以满足高强度、高频次的处理需求。人工智能芯片的出现加速了深层神经网络的训练迭代速度,让大规模的数据处理效率显著提升,极大地促进了人工智能行业的发展。目前,出现了GPU、NPU、FPGA和各种各样的AI-PU专用芯片。相比传统的CPU只能同时做一两个加减法运算,NPU等专用芯片多采用“数据驱动并行计算”的架构,特别擅长处理视频、图像类的海量多媒体数据。在具有更高线性代数运算效率的同时,只产生比CPU更低的功耗。

3、深度学习研究成果卓著,带动算法模型持续优化

2006年,加拿大多伦多大学教授杰弗里·辛顿提出了深度学习的概念,极大地发展了人工神经网络算法,提高了机器自学习的能力,例如谷歌大脑团队在2012年通过使用深度学习技术,成功让电脑从视频中“认出”了猫。随着算法模型的重要性进一步凸显,全球科技巨头纷纷加大了这方面的布局力度和投入,通过成立实验室,开源算法框架,打造生态体系等方式推动算法模型的优化和创新。目前,深度学习等算法已经广泛应用在自然语言处理、语音处理以及计算机视觉等领域,并在某些特定领域取得了突破性进展,从有监督式学习演化为半监督式、无监督式学习。

4、资本与技术深度耦合,助推行业应用快速兴起

当前,在技术突破和应用需求的双重驱动下,人工智能技术已走出实验室,加速向产业各个领域渗透,产业化水平大幅提升。在此过程中,资本作为产业发展的加速器发挥了重要的作用,一方面,跨国科技巨头以资本为杠杆,展开投资并购活动,得以不断完善产业链布局,另一方面,各类资本对初创型企业的支持,使得优秀的技术型公司迅速脱颖而出。据美国技术研究公司VentureScanner的调查报告显示,截至到2017年12月,全球范围内总计2075家与人工智能技术有关公司的融资总额达到65亿美元。同时,美国行业研究公司CBInsight公布了对美国人工智能初创企业的调查结果,这类企业的融资金额约是2012年的10倍。目前,人工智能已在智能机器人、无人机、金融、医疗、安防、驾驶、搜索、教育等领域得到了较为广泛的应用。

(三)新一代人工智能主要发展特征

在数据、运算能力、算法模型、多元应用的共同驱动下,人工智能的定义正从用计算机模拟人类智能演进到协助引导提升人类智能,通过推动机器、人与网络相互连接融合,更为密切地融入人类生产生活,从辅助性设备和工具进化为协同互动的助手和伙伴,如图3所示。主要特征如下:

1、大数据成为人工智能持续快速发展的基石

2、文本、图像、语音等信息实现跨媒体交互

当前,计算机图像识别、语音识别和自然语言处理等技术在准确率及效率方面取得了明显进步,并成功应用在无人驾驶、智能搜索等垂直行业。与此同时,随着互联网、智能终端的不断发展,多媒体数据呈现爆炸式增长,并以网络为载体在用户之间实时、动态传播,文本、图像、语音、视频等信息突破了各自属性的局限,实现跨媒体交互,智能化搜索、个性化推荐的需求进一步释放。未来人工智能将逐步向人类智能靠近,模仿人类综合利用视觉、语言、听觉等感知信息,实现识别、推理、设计、创作、预测等功能。

3、基于网络的群体智能技术开始萌芽

4、自主智能系统成为新兴发展方向

5、人机协同正在催生新型混合智能形态

人类智能在感知、推理、归纳和学习等方面具有机器智能无法比拟的优势,机器智能则在搜索、计算、存储、优化等方面领先于人类智能,两种智能具有很强的互补性。人与计算机协同,互相取长补短将形成一种新的“1+1>2”的增强型智能,也就是混合智能,这种智能是一种双向闭环系统,既包含人,又包含机器组件。其中人可以接受机器的信息,机器也可以读取人的信号,两者相互作用,互相促进。在此背景下,人工智能的根本目标已经演进为提高人类智力活动能力,更智能地陪伴人类完成复杂多变的任务。

新一代人工智能技术框架

与早期人工智能相比,新一代人工智能正在全新信息环境、海量数据基础和持续演进、不断丰富的战略目标的引领下,依托于云计算、大数据两大基础平台和机器学习、模式识别和人机交互三大通用技术,以新型计算架构、通用人工智能和开源生态系统为主要导向,持续搭建和完善技术框架体系,不断逼近技术奇点,深刻变革人类生产生活。

(一)新一代人工智能的技术演进

1、从原有的CPU架构,转变为GPU并行运算架构深

度学习算法运行于CPU架构的指令需求过于复杂。

机器学习领域的泰斗杰弗里·辛顿开启了深度学习在人工智能领域研究的浪潮,大数据技术带来的数据洪流满足了深度学习算法对于训练数据量的要求,但是算法的实现还需要更快更强大的处理器予以支撑。传统的主流CPU架构如X86、ARM等往往需要数百甚至上千条指令才能完成一个神经元的处理,对于并不需要太多的程序指令,却需要海量数据运算的深度学习的计算需求,并不能很好地匹配与适应。

GPU架构具备与深度学习相匹配的并行运算能力。GPU(图形处理器)最初是个人电脑、工作站、游戏机和一些移动设备上运行绘图运算工作的微处理器,可以快速处理图像上的每一个像素点,其海量数据并行运算的能力与深度学习需求非常符合。当前主流的CPU只有4核或者8核,可以模拟出12个处理线程来进行运算,但是普通级别的GPU就包含了成百上千个处理单元,高端的甚至更多,这对于多媒体计算中大量的重复处理过程有着天生的优势。吴恩达教授领导的谷歌大脑研究工作结果表明,12颗英伟达(Nvidia)公司的GPU可以提供相当于2000颗CPU的深度学习性能,为技术的发展带来了实质性飞跃,被广泛应用于全球各大主流深度学习开发机构与研究院所。

2、从单一算法驱动,转变为数据、运算力、算法复合驱动

缺少数据支撑与运算力保证的算法驱动模式难以持续发展。人工智能发展以实现计算智能为重要研究方向,充分利用现代高性能计算机的快速计算和记忆存储能力,设计出神经计算、模糊计算和进化计算等求解算法,解决优化筛选、单点搜索、逻辑推理等实际应用问题。尽管深度学习概念和浅层学习算法已经被提出多年,但是一直进展缓慢,究其原因是缺乏海量的数据积累和与之相匹配的高水平计算能力,无法对算法模型进行持续的改进与优化,只停留在理论研究阶段,距离实际应用存在不小的差距。

数据、运算力和算法复合驱动模式引发人工智能爆发式增长。与早期人工智能相比,新一代人工智能体现出数据、运算力和算法相互融合、优势互补的良好特点。数据方面,人类进入互联网时代后,数据技术高速发展,各类数据资源不断积累,为人工智能的训练学习过程奠定了良好的基础。运算力方面,摩尔定律仍在持续发挥效用,计算系统的硬件性能逐年提升,云计算、并行计算、网格计算等新型计算方式的出现拓展了现代计算机性能,获得更快的计算速度。算法方面,伴随着深度学习技术的不断成熟,运算模型日益优化,智能算法不断更新,提升了模型辨识解析的准确度。

3、从封闭的单机系统,转变为快捷灵活的开源框架

专家系统本地化特性限制了人工智能发展步伐。以往的人工智能专家系统是基于本地化专业知识进行设计开发,以知识库和推理机为中心而展开,推理机设计内容由不同的专家系统应用环境决定,单独设定模型函数与运算机制,一般不具备通用性。同时,知识库是开发者收集录入的专家分析模型与案例的资源集合,只能够在单机系统环境下使用且无法连接网络,升级更新较为不便。

开源框架推动构建人工智能行业解决方案。人工智能系统的开发工具日益成熟,通用性较强且各具特色的开源框架不断涌现,如谷歌的TensorFlow、Facebook的Torchnet、百度的PaddlePaddle等,其共同特点均是基于Linux生态系统,具备分布式深度学习数据库和商业级即插即用功能,能够在GPU上较好地继承Hadoop和Spark架构,广泛支持Python、Java、Scala、R等流行开发语言,与硬件结合生成各种应用场景下的人工智能系统与解决方案。

4、从学术研究探索导向,转变为快速迭代的实践应用导向

学术导向难以满足复杂数据信息背景下的创新需求。随着人工智能的不断发展,分化产生了不同的学术流派,以符号主义、联结主义、进化主义、贝叶斯学派、类推学派等为典型。不同学派按照各自对人工智能领域基本理论、研究方法和技术路线的理解,以学术研究为目的进行探索实践,一定程度上推动了人工智能理论与技术的发展。在如今数据环境改变和信息环境变化的背景下,现实世界结构趋向复杂,单纯依靠课题立项和学术研究无法持续推动人工智能满足当前现实世界的模拟与互动需求,快速变化的应用环境也容易导致理论研究与实际应用相脱节,影响人工智能技术对经济发展和社会进步的积极拉动作用。

(二)新一代人工智能技术体系

新一代人工智能技术体系由基础技术平台和通用技术体系构成,其中基础技术平台包括云计算平台与大数据平台,通用技术体系包括机器学习、模式识别与人机交互。在此技术体系的基础上,人工智能技术不断创新发展,应用场景和典型产品不断涌现。

1、云计算:基础的资源整合交互平台

2、大数据:提供丰富的分析、训练与应用资源

大数据主要共性技术包括采集与预处理、存储与管理、计算模式与系统、分析与挖掘、可视化计算及隐私及安全等,具备数据规模不断扩大、种类繁多、产生速度快、处理能力要求高、时效性强、可靠性要求严格、价值大但密度较低等特点,为人工智能提供丰富的数据积累和价值规律,引发分析需求。同时,从跟踪静态数据到结合动态数据,可以推动人工智能根据客观环境变化进行相应的改变和适应,持续提高算法的准确性与可靠性。

3、机器学习:持续引导机器智能水平提升

机器学习指通过数据和算法在机器上训练模型,并利用模型进行分析决策与行为预测的过程。机器学习技术体系主要包括监督学习和无监督学习,目前广泛应用在专家系统、认知模拟、数据挖掘、图像识别、故障诊断、自然语言理解、机器人和博弈等领域。机器学习作为人工智能最为重要的通用技术,未来将持续引导机器获取新的知识与技能,重新组织整合已有知识结构,有效提升机器智能化水平,不断完善机器服务决策能力。

4、模式识别:从感知环境和行为到基于认知的决策

模式识别是对各类目标信息进行处理分析,进而完成描述、辨认、分类和解释的过程。模式识别技术体系包括决策理论、句法分析和统计模式等,目前广泛应用在语音识别、指纹识别、人脸识别、手势识别、文字识别、遥感和医学诊断等领域。随着理论基础和实际应用研究范围的不断扩大,模式识别技术将与人工神经网络相结合,由目前单纯的环境感知进化为认知决策,同时量子计算技术也将用于未来模式识别研究工作,助力模式识别技术突破与应用领域拓展。

5、人机交互:支撑实现人机物交叉融合与协同互动

人机交互技术赋予机器通过输出或显示设备对外提供有关信息的能力,同时可以让用户通过输入设备向机器传输反馈信息达到交互目的。人机交互技术体系包括交互设计、可用性分析评估、多通道交互、群件、移动计算等,目前广泛应用在地理空间跟踪、动作识别、触觉交互、眼动跟踪、脑电波识别等领域。随着交互方式的不断丰富以及物联网技术的快速发展,未来肢体识别和生物识别技术将逐渐取代现有的触控和密码系统,人机融合将向人机物交叉融合进化发展,带来信息技术领域的深刻变革。

(三)国内外技术对比分析

1、发达国家基础平台布局完善,国内仍缺乏自主核心技术。

国外企业技术领先且大量布局公有云业务领域,大数据业务经验成熟、分工明确且数据开放程度较高。云计算方面,国外云计算企业基础技术相对领先,服务器虚拟化、网络技术(SDN)、存储技术、分布式计算、OS、开发语言和平台等核心技术基本上都掌握在少数国外公司手中,凭借着强大的创新和资本转化能力,有能力支持技术不断推陈出新。同时,国外企业在细分领域都有所布局,形成了完善的产业链配合,提供各种解决方案的集成,可以满足多场景使用要求。大数据方面,国外公司在大数据技术各个领域方面分工明确,有的专注于数据挖掘,有的专注于数据清洗,也有的专注于数据存储与管理。同时,国外从事大数据技术研发的企业有很大一部分是由传统的数据公司转型而来,如IBM、甲骨文(Oracle)、易安信(EMC,2015年10月被戴尔公司收购)等,这类公司在大数据概念兴起之前就早已充分接触数据领域业务,在数据科学领域有较强的研发能力。国外数据保护制度相对完善,数据开放标准成熟,为大数据技术研发提供了良好的外部环境。

国内企业自主核心技术有待提高,数据开放程度偏低且缺乏必要的保护。云计算方面,国内虽然有阿里、华为、新华三、易华录等一批科技公司大力投入研发资源,但核心技术积累依然不足,难以主导产业链发展。大数据方面,国内企业仍处于“跟风”国外企业的发展阶段,在数据服务内核等方面缺乏积淀与经验,未能完全实现从IT领域向DT(数据技术)领域的转型。同时,国内数据应用环境相对封闭,政府公共数据开放程度较低,数据安全保护等级有待提高,数据安全风险评估制度与保障体系有待完善,对大数据技术的升级发展形成了一定的限制因素。

2、发达国家在机器学习和人机交互领域具备先发优势,国内企业存在技术差距与人才短板。

国外机构发力机器学习主流开源框架,积极开发人机交互下一代新型技术。机器学习方面,目前较为流行的开源框架基本都为国外公司或机构所开发,例如TensorFlow、Torchnet、Caffe、DMTK、SystemML等,同时注重大数据、云计算等基础支撑信息技术对机器学习研究的促进作用,以及机器学习的应用实践,已进入研发稳定阶段。人机交互方面,国外技术企业基于触控技术、可穿戴设备、物联网和车联网的发展基础,正在积极开发性价比更高的下一代人机交互新型技术,以对现有产品进行升级并降低成本。

3、国内外模式识别研究水平基本处于同一起跑线,重点聚焦于语音识别与图像识别。

国内外研究领域基本一致,围绕前沿技术领域开展持续创新。目前,国内外企业均在围绕模式识别领域的基础理论、图像处理、计算机视觉以及语音信息处理展开集中研究,探索模式识别机理以及有效计算方法,为解决应用实践问题提供关键技术。国外科技公司在模式识别各领域拥有多年的技术积累,深入语音合成、生物认证分析、计算机视觉等前沿技术领域,具备原创性技术突破能力;国内企业在模式识别前沿技术研发方面与国外同行处于并跑状态,除百度、讯飞等行业龙头外,众多初创公司也加入了模式识别研究的技术与应用创新,催生了一批有创意的新型产品。

语音识别和图像识别准确率明显提升,国内企业中文语音识别技术相对领先。国内外企业均致力于提高语音识别和图像识别准确率,谷歌和微软分别表示旗下的语音识别产品技术出错率已降至8%和6.3%,微软研究院开发的图像识别系统在世界著名的图片识别竞赛ImageNet中获得多个类别评比的第一名,为下一步的商业化应用奠定了良好基础。同时,国内企业重点突破中文语音识别技术,搜狗、百度和科大讯飞三家公司各自宣布旗下的中文语音产品识别准确率达到了97%,处于业内领先水平。

为了让大家更好的了解这家人型机器人制造领域的独角兽,深圳市机器人协会特派记者来到优必选南山总部,对会员企业优必选的创始人周剑进行了专访。

传动网-工业自动化与智能制造的全媒体“互联网+”创新服务平台

THE END
1.大模型將為軟體領域帶來哪些影響?2024年《政府工作報告》首次提出“人工智能+”戰略行動,旨在推動人工智能賦能千行百業。以大模型為代表的新一代人工智能技術成為軟體領域智能化轉型的核心驅動力,大模型為傳統軟體注入新智力,為軟體及其形態帶來新能力新變革,同時大模型也為提升軟體研發生産力和加速創新帶來新思路,並推動軟體産業結構性變化。 http://big5.news.cn/gate/big5/www.xinhuanet.com/tech/20241217/fd747ba0332d4a209f0f8069b35365b1/c.html
2.垂直大模型:赋能垂直行业发展的AI技术同时,互联网和移动设备的普及带来了大数据的积累,为AI模型训练提供了丰富的数据资源,增强了模型的准确性和泛化能力。数据标注和清洗技术的进步进一步确保了用于训练的数据质量和一致性,为构建更可靠的AI模型提供了基础。(二)市场:AI技术应用突破的重要动力 市场需求的高质量标准正强烈刺激着人工智能(AI)技术的https://baijiahao.baidu.com/s?id=1814786485950095085&wfr=spider&for=pc
3.国内AI大模型产业飞速发展!新一代人工智能发展年度报告(2023伴随人工智能技术的加速演进,AI大模型已成为全球科技竞争的新高地、未来产业的新赛道、经济发展的新引擎,发展潜力大、应用前景广。近年来,我国高度重视人工智能的发展,将其上升为国家战略,出台一系列扶持政策和规划,为 AI 大模型产业发展创造了良好的环境。 https://blog.csdn.net/2401_85782938/article/details/142170775
4.人工智能技术创新情况如何?问答集锦为加速构建人工智能高质量数据集,面向大模型的新一代数据工程成为核心技术手段。大模型的数据工程涵盖训练https://www.vzkoo.com/question/1733983264116436
5.2023年人工智能10大趋势,揭示AI大模型的“喜”与“忧”4.美国成为顶级人工智能模型的主要来源国。 2023 年,61 个著名的人工智能模型源自美国的机构,超过欧盟的 21 个和中国的 15 个。 美国也仍然是人工智能投资的首选之地。2023 年,美国在人工智能领域的私人投资总额为 672 亿美元,是中国的近 9 倍。 然而,中国依然是美国最大的竞争对手,中国的机器人安装量居世界https://www.xakpw.com/single/31824
6.一文盘点2023人工智能进展,不止大模型而已不过对于AI的“另半边天”计算机视觉而言,在2023年,这个领域也有许多不可忽视的新进展。 计算机视觉怎么样了? 今年大家都在重点关注大语言模型,但实际上,计算机视觉领域也取得了不少进展,从计算机视觉顶会CVPR 2023中就可以窥见一斑。 今年CVPR 2023共接收了2359篇论文,大多数研究都集中于以下4个主题,Sebastian Raschhttps://zhuanlan.zhihu.com/p/667500521
7.AI年度总结与展望:超大规模预训练模型爆发,自动驾驶迎商业化前夜AphaFold2成功预测98%蛋白质结构,预训练大模型迎来大爆发,自动驾驶迈入商业化试点探索新阶段,元宇宙概念东风劲吹,首个关于AI伦理的全球协议通过,商汤科技摘得“AI 第一股”(在2022年) 前沿技术突破令人欣喜,落地应用“润物细无声”般深入各行业,业界也开始正视人工智能的问题和挑战。https://www.tmtpost.com/5974823.html
8.人工智能领域有什么新进展?人工智能领域有什么新进展? 随着人工智能的不断发展,它正在改变着我们的生活。在流感大流行之前和现在的新常态中,人工智能仍然是科技行业的一个关键趋势。随着时间的推移,它正在接触到更广泛的受众,科学家、工程师和企业家们正从人工智能及其分支、物联网和机器学习中获益。https://baidu-mip.xianjichina.com/special/detail_487427.html
9.AI大模型加速迭代产业链公司获机构重点布局始于去年的AI(人工智能)大模型浪潮热度再次升温。农历春节期间,AI领域利好不断,以Open AI为首的诸多国内外互联网龙头公司均迎来AI大模型技术的新进展。多家机构及业内人士称,看好未来AIGC(人工智能生成内容)产业发展前景以及算力市场的增长空间,产业链内多家公司已获得机构重点关注及提前布局。 http://www.xinhuanet.com/20240219/e4bc9e4c27c645d28d39b484cf92e979/c.html
10.明日主题前瞻国内首个!人形机器人R合肥在人形机器人领域的科研平台建设迎来新进展 【主题详情】 国内首个!人形机器人R-DDPRM模型正式发布 据媒体报道,中国首个基于视觉扩散架构的人形机器人任务生成式R-DDPRM模型正式发布,该模型由坐落于成都科创生态岛的成都人形机器人创新中心研发。其创新之处在于能够让人形机器人跨越多个约束进行泛化,创造真正的人形https://wap.eastmoney.com/a/202406263114733975.html
11.基因智能诊疗领域取得新进展近日,中国科学院深圳先进技术研究院医工所医学人工智能研究中心李志成研究员团队在肿瘤影像-基因智能诊疗领域取得新进展。团队利用肿瘤影像、基因等多组学数据,建立了生物医学可解释的人工智能精准诊疗模型,并在多中心数据集上对影像-基因映射关系进行了可重复性验证研究。最新研究成果以Biological pathways underlying prognostihttps://www.siat.ac.cn/kyjz2016/202109/t20210923_6213442.html