1、AbstractMuseumbuildingsperformambitiousdemandsforsoundconditionsofexhibitsandcomfortofvisitors.Thereisanarrowallowanceforroomtemperatureandrelativehumidity,whichhastobemaintainedforvaryingsituationsofweatherandoccupancy.Lightinghastoassureanexcellentvisual
2、performancebuttoavoiddeteriorationofexhibits.Energyconsumptioncanbekeptextremelylowcontrariwise.Severalhighqualityandlowenergymuseumbuildingscouldberealizedrecentlybyutilizationofenergyefficientmeasuresandrenewableenergies.Outstandingpiecesofarchitecture,e.g.
3、KolumbaArtMuseum,Cologne(architectP.Zumthor),Emil-Schumacher-Museum,Hagen(architectM.Lindemann),arepresentedandintegratedadvancedtechnologieslikethermalactiveroomsurfaces,lowairchangeventilation,geothermalheatingandcooling,andcontrolleddaylightingareexplained.摘要博物馆
4、建筑的游客进行展品和舒适的声音条件有野心的要求。有房间的温度和相对湿度的一个狭窄的津贴,都必须保持不同的天气和占用情况。照明,保证良好的视觉表现,但为了避免恶化的展品。能源消耗可以保持极低的相反。几个高质量和低能量的博物馆建筑可以通过节能措施和可再生能源的利用最近发现。建筑的优秀作品,如伦巴艺术博物馆,古龙水(建筑师P.卒姆托),埃米尔舒马赫博物馆,哈根(建筑师M.Lindemann),提出并集成先进技术如热活动室表面,低换气通风,地热加热和冷却,控制光线的解释。KeywordsMuseumbuildings;Energyefficiency;Conservationofe
5、xhibits;Comfort;Thermalconditioning;Lighting关键词博物馆建筑;能源效率;保护展品;舒适的;热调节;照明1.IntroductionThereisabasicconflictbetweenconservationandexposureofexhibitsformuseums.Ontheonehandminimalfluctuationsofroomtemperature(21C土3C),relativehumidity(55%土5%),andairflowthroughout
6、theyearaswellaslowirradiationoflightandultravioletradiationarerequiredinordertoreduceageingofsamplestoaminimum.Ontheotherhandvisitorsandstaffdemandexcellentthermalcomfort,airquality,roomillumination,andvisualperceptionofobjects.1.景区简介有博物馆展品保护和曝光之间的基本冲突。对室温一
7、方面最小的波动(21C3C),相对湿度(55%土5%),和空气流量全年以及光和紫外线辐射低照射才能减少老化的样品到最小。另一方面,游客和员工需求的优良的热舒适性,空气质量,室内照明,和物体的视觉感知。Theerectionandoperationofmuseumbuildingswithsuchhighperformancestandardsnowadayshastobeenergyefficientwithaminimumoutputofgreenhousegasesoverthelifecycle.Thismeans
8、alowembodiedenergyinthebuildingmaterialsandconstruction,alowenergydemandforheating,cooling,ventilationandlightingaswellasautilizationofrenewableinsteadoffossilenergies.Lastnotleasteconomicalconditionshavetobefulfilled.Whilebuildinginvestmentsoftentendtobe
9、increasedbymeasuresofenergyefficiency,theoperationcostsforenergyandmaintenancewillbereduced.Overalllifecyclecostsmustclearlyaccountforsustainability.安装与这样的高性能标准,如今已是博物馆建筑运行节能的整个生命周期的温室气体的最小输出。这意味着低能耗的建筑材料和建筑,低能源需求的加热,冷却,通风和照明,以及利用替代化石能源的可再生能源。最后但并非最不重要的经济条件必须满足。而建设的投资往往是提高
10、能源效率的措施,为能源和运行维护成本将会降低。全生命周期成本必须清楚地说明可持续发展。Thisambitiousandcomplextaskofhighqualityaswellasecologicallyandeconomicallysustainablemuseumbuildingscanonlyberealizedbyacomprehensivedesignapproachofarchitects,engineersandexpertsutilizingthelatestknowledgeaboutpassive
11、andactivemeansofarchitectureandtechnology.Thischallengehascreatednewprinciplesofdesign,whichdifferalotfromthetraditionalandfullyairconditionedmuseumbuilding,asadvancedexamplesshow1.这一雄心勃勃的高质量的任务以及生态和经济可持续发展的博物馆建筑只能通过一个全面的设计方法,实现了复杂的建筑师,工程师和利用被动和主动的架构和技术的最新知识的专家。这一挑战
12、,创造了新的设计原则,这有很大的区别于传统和全空调建筑博物馆,以及先进的例子表明1。2.Principlesofenergyefficientmuseumbuildings2博物馆建筑的节能原理2.1.Thermalcontrol2.1热控制Thenarrowbandsofroomtemperatureandrelativehumidityaretraditionallyaimedatbycompleteairconditioningwithheating,cooling,dehumidification,humidificatio
13、nofairandvaryingairchangeratesforexhibitionrooms.The“idealclimate”supposedtobecreatedbythesemeansprovokessomedoubts:Theacplants,whichhavetoadjustbymeasurementandcontroltechnologytotheever-changinginfluencesofnumberandlocalconcentrationofvisitorsaswell
14、externalclimatefactors,cannotwarrantstableclimateconditioninspiteoftheirtechnicalandfinancialinput.Thelargevolumesofheatedandcooledair,whichhavetobetransportedunderpeakloads(2to3andupto6airchangesperhour),makeitdifficulttoavoidnegativeeffectsofdraft
15、andraiseddust.Forthecaseoffailureredundantback-upsystemshavetobeinstalledorexhibitshavetoberemoved.Theenergyefficiencyofcompletelyairconditionedmuseumscanbeimprovedbypassivemeanslikegeometry,thermalinsulation,thermalcapacityofroomsurfaces,orientationands
16、olarcontrolofwindowsaswellasbyadvancedsystemsandcomponents,butthenewprinciplesofclimatecontrol,whichareshowninTable1,allowforhigherefficiencyandperformance:房间的温度和相对湿度的窄频带通常旨在通过加热,完整的空调冷却,除湿,加湿空气变为展览室的空气变化率。“理想的气候”应该由这些方法产生了一些疑问:交流的植物,有调整的测量和控制技术的不断变化的影响和数量的局部浓度的游客以及外部
17、气候因素,不能保证稳定的气候条件下,他们的技术和资金投入,尽管。加热和冷却空气量大,这已被运往在峰值负载(2到3和6的空气变化每小时),使其难以避免的负面影响和扬尘的草案。失败的冗余备份系统的情况下,必须安装或展品已被删除。能源效率的空调博物馆完全可以通过被动手段如几何,保温的改进,房间表面的热容量,定位和窗户的太阳能控制以及先进的系统和组件,但新的原则,气候控制,这是显示在表1,允许更高的效率和性能:Table1.Disturbancesandmeansofclimatecontrolofmuseumbuildings.DisturbancesofEffectM
18、eansofActiveclimatefactorstabilization/controlpassiveAmbienttemperatureHeattransmittanceThermalCapacitySurfaceTemperatureControlWindInfiltrationAirtightJoints,AirLocksSolarRadiationHeatGainSolarControl(glass,shadingdevice)SurfaceTemperatureControlLightingHeatGainVentilation+SurfaceTe
19、mperatureControlVisitorsHeatandHumidityGainSorptionVentilation表1博物馆的建筑气候控制的干扰和手段。气候因子影响干扰稳定/控制被动手段环境温度热传递热容量温度控制风渗透密封接头,空气锁太阳辐射得热太阳能控制(玻璃,遮阳装置)表面温度控制照明得热通风+表面温度控制游客温度和湿度,获得吸附通风Thermalcapacityofindoorroomsurfacesincombinationwithchilled/heatedceilings,floorsandwallsarethebasicprin
20、cipalsofastableclimatecontrol.Theroomsurfacesmaintaintherequiredtemperatureforexhibitsbyembeddedwaterpipes(Fig.1andFig.2).Thusallconventionalheatorcolddistributerslikeradiatorsorconvectorscanbeomittedwithregardtoconservatoryreasons.Thematerialsusedareco
21、ncrete(ceilings,walls),screed(floors),plasterwithcement,lime,gypsumorclaybinder(ceilings,walls)ormasonry(walls).Clayplasterhasarelativelyhighsorptionrate,whichallowsforstoringexcesshumidity(e.g.fortimesofhighvisitorfrequency).的热容量的室内表面结合冷却/加热的天花板,地板和墙壁都是一个稳定的气候控
22、制的基本原则。房间的表面保持的嵌入式水管具有所需温度(图1和图2)。因此所有的常规热或冷的经销商如散热器或对流可以忽略关于音乐的原因。使用的材料是混凝土(天花板,墙壁),找平层(层),水泥,石膏,石膏和粘土粘合剂(天花板,墙)或砌体(墙)粘土石膏具有较高的吸附率,它允许存储多余的湿度(如游客频率倍)。Fig.1.KolumbaArtMuseuminCologne,D.Architect:PeterZumthor,Energyconcept:KahlertEng.and4greenarchitecture2.Exhibitionroomwithsur
23、facetemperaturecontrolofceilings,floorsandwalls图1伦巴艺术博物馆在德国科隆,D.建筑师:彼得卒姆托,能源概念:卡勒特工程4greenarchitecture2。随着屋顶表面温度控制的展览室,地板和墙壁。Fig.2.KolumbaArtMuseuminCologne,D.Architect:PeterZumthor,Energyconcept:KahlertEng.and4greenarchitecture2.Waterpipesforheatingandcoolingembedded
24、inbuildingcomponents.图2伦巴艺术博物馆在德国科隆,D.建筑师:彼得卒姆托,能源概念:卡勒特工程4greenarchitecture2。加热和冷却水管道嵌入在建筑构件。Componentsofthebuildingenvelopearecharacterizedbyairtightnessandthermalinsulationinadditiontothedescribedsurfacetemperaturecontrol.Theventilationsystemcanbereducedincomparison
25、tocompleteairconditioning,asairchangeratesaremainlybasedonloadsofoccupantsandlighting.Thedesignofadvancedventilationandsurfacecontrolsystemsrequiresdynamicalsimulationsofthethermalbehaviourandtheairflow(Fig.3andFig.4).建筑围护结构的组件的特点是除了描述的表面温度控制的气密性和保温。通风系统能够完成
27、EM-Q1J.Z3MH3126811-012.QDOS-D1GEW凹Prat*vdlFig.4.CFDsimulationsfordistributionofairvelocity.KolumbaArtMuseuminCologne,D.2.图4对气流速度分布的模拟研究。在科隆伦巴艺术博物馆,D2。Geothermalenergyispredestinedforheating(incombinationwithaheatpump)andcooling(freecooling)ofroomsurfacesinMiddl
28、eEurope.Boreholesofadepthuntil100mwithheatexchangersareusedforthebasicloadsofwatersystems.Horizontalearthairheatexchangersareappliedforpreheating/-coolingoffreshair(Fig.1,Fig.2,Fig.3,Fig.4,Fig.5,Fig.6andFig.7).地热能是命中注定的加热(结合热泵)和冷却(空冷)在欧洲中部的房间面。钻孔的深度在100米,换
29、热器是用于水系统的基本负荷。水平地球空气热交换器是用于预热/新鲜空气冷却(图1,图2,图3,图4,图5,图6和图7)。Fig.5.GeothermalheatingandcoolingofEmil-Schumacher-Museum,Hagen,D.Architect:M.Lindemann.Energyconcept:.Earthtubewithheatexchangers.KahlertEng.and4greenarchitecture3图5地热采暖和埃米尔舒马赫博物馆,哈根,D.建筑师冷却:M.林德曼。能的概念:卡勒特工程4greenarchi
30、tecture3。随着地球管换热器。Fig.6.GeothermalheatingandcoolingofEmil-Schumacher-Museum,Hagen,D.Architect:M.Lindemann.Energyconcept:KahlertEng.and4greenarchitecture3,Verticalsectionofbuildingwithearthtubesandheatpumpforsurfacetemperaturecontrol.图6地热采暖和埃米尔舒马赫博物馆,哈根,D.建筑师冷却:M.林德曼。能的
31、概念:卡勒特工程4greenarchitecture3。与地球表面温度控制管与热泵建筑垂直剖面。Fig.7.Geothermalpre-coolingofairbyearthducts.Emil-Schumacher-Museum,Hagen,D.图7sca-msnqcbEQM地温预冷空气管道的地球。埃米尔舒马赫博物馆,哈根,D.Threeexamplesofoutalargernumberofmuseumsusingtheseprinciples(compareHYPERLINK)areshownhere,KolumbaArt
32、MuseuminCologneandEmil-Schumacher-MuseuminHagen(ESMH),andKunsthausBregenz.AcomparisonofenergyconsumptionwithtraditionalbuildingscouldbedemonstratedinHagen,wheretheexistingOsthaus-Museum(OMH)islocateddirectlybesidethenewEmil-Schumacher-Museum,whichwasopened2009.F
33、ig.8shows,thattheannualenergycostsoftheESMHcouldbereducedto11.85/m2abymeansofenergyefficiencyandto2.71/m2ainadditionbyrenewableenergiesincomparisonto29.67/m2aoftheOHM.IntermsofenergytheclassificationofconsumersandrenewablesourcesisgiveninTable2.三
34、例出大量使用这些原则的博物馆(比较www.eulebo信息)是在这里显示,在德国科隆,哈根埃米尔舒马赫博物馆伦巴艺术博物馆(ESMH),与布雷根茨美术馆。与传统的建筑能耗的比较,可以证明在哈根,在现有Osthaus博物馆(OMH)是直接位于在新的埃米尔舒马赫博物馆,这是打开2009。图8显示,该ESMH每年的能源成本可以降低到11.85/M2A在能源效率的手段和2.71/M2A另外的29.67/M2A欧姆比较可再生能源。在能源消费和可再生能源方面的分类表2给出了。Fig.8.Comparisonofannualenergycosts/(m2a)forOsthau
35、s-Museum(OMH)andEmil-Schumacher-Museum(ESMH).图8每年的能源费用比较/(M2A)为Osthaus博物馆(OMH)和埃米尔舒马赫博物馆(ESMH)。Table2.AnnualenergydemandofconsumersandrenewableenergiesforEmil-Schumacher-Museum(grossfloorarea2600m.EnergydemandEkWh/aRenewableenergieskWh/aLighting38,000Photovoltaics30,000Heatin
36、g104,000Geothermalheating+cooling266,000Cooling104,000Ventilation58,000Earthairheatexchangers9000表2年度能源需求的消费者和可再生能源for埃米尔-舒马赫-博物馆(总楼面积2600平方米)能源需求瓦可再生能源瓦照明38000光伏30000加热104000地热采暖+冷却266000冷却104000通风58000地球空气换热器90002.2.Lightcontrol2.2灯光控制Therearethreetasksforthelightinginmuseums,visi
37、bilityofobjects,conservationofobjects,andilluminationofrooms,whichcanberealizedbydaylightand/orartificiallight.Agoodvisibilityofobjectsneedsaminimumbrightness,goodcontrastswithoutcastshadows,goodcolourreproduction,andavoidanceofglare.Dependingonthekindofob
38、jects,e.g.two-dimensionalpictureswithmicrostructuresonthesurface,threedimensionalsculpturesorlargeexhibitslikebuildingmonuments,theobjectlightingwilldifferalot,especiallyasthereplacementofexhibitionsrequiresacertainvariety.Foratruecolourreproductionofartwork
39、itishighlyimportantwhetherdaylightorartificiallightsourcesareusedandwhichcolourrenderingisappliedontheroomsurfaces.Theconservationofobjectsoftenisincontradictiontogoodvisibility,whichincreaseswiththebrightness.Theenergyofabsorbedlightdamagestheobject.The
40、shorterthewavelengththehigherthedestructiveenergyofradiationis,thusUVorbluelighthasahigherdamagefactorthangreenorred.Thismeansthatadark(absorbing)surfacewillbedamagedmorethanalightone,andaredsurfacemorethanablueone.Inadditionthesensitivityhighly
41、dependsonthekindofmaterial,e.g.paperismoresensitivethanmetal.Finallytheageingofamaterialisinfluencedbythetimeofillumination.Becauseofthesereasonsmaximumvaluesfortheenergeticexposuretolightaredefined.As50luxisthelowestvalueforgoodvisibility,thisillum
42、inationoftenisdefinedasmaximumvalueforsensitiveobjectsofpaperorfabric,while150luxaredefinedforpaintingsoncanvas.Thisregulationisvulnerablefromthescientificpointofview,asitdoesnotconsiderthespectralcomponentandthetimeofillumination.Thereforemanymuseums
43、trytodefinetheconservationofobjectsby4:在博物馆的照明三个任务,对象的可见性,保护的对象,和照明的房间,可以通过日光或人工光源。一个好的对象的可见性,需要一个最小亮度对比,好不投射阴影,良好的色彩再现,并避免眩光。根据对象的类型,例如二维图片上的表面微结构,三维雕塑或一样的建筑古迹众多的展品,物体的照明将有很大的区别,尤其是展示更换需要一定的品种。对于一个真正的颜色复制的艺术品是非常重要的是日光或人工光源的使用和色彩渲染应用在房间的表面。对象的保护往往是矛盾的良好的知名度,和亮度增加。被吸收的光损失能量的物体。波长越短的高辐射的破
46、sityoflightcontrolinmuseums,concerningdaylightaswellasartificiallight.Fortheorientationofvisitorsageneralroomilluminationisneeded,whichcanbeobjectlightingsimultaneously.Daylightopeningsshouldallowthevisitorsaviewtotheoutside.Daylightingisappliedinmanymuseums
47、,asitischaracterizedbygoodcolourreproduction,naturallightingconditions,continuousspectraldistribution,andenergyefficiency.Althoughintegralpartofthearchitecturaldesignlightingexpertsshouldbeconsulted.Forilluminationpurposesskylightsaremoreefficientthanverticalwi
48、ndows.Transmissionofdirectsunlightmustbeavoidedbecauseofglare.Forcoolingsituationssolarheatgainsmustbeminimized.Thiscanbedonebyfixedormovableshadingdevices.Solarcontrolglasswithoutadditionalshadingorlightdiffusioncannotbeused,asglareisboundtooccur.Mova
49、bleshadingdevices,e.g.lamellas,haveahighadaptabilityandallowforanaccuratedaylightcontroland,maybe,forthermalcontrolaswellastotallightblack-out.Fig.9showstheannualilluminationofanexhibitionroomwithaskylightandfixedshadingdevices,whichisdesignedtoguaran
50、teeamaximumilluminationof400luxundermaximumexternalillumination.Forpoordaylightconditionsinwinterandundercoveredskytheroomilluminationisverypoorand(powerconsuming)artificiallighthastobeswitchedon.这些规定应力光控制的必要性,在博物馆中,关于白天和人工光。的游客一般室内照明的方向是必要的,它可以同时对象照明。日光的开口应允许游客从外
51、面。采光应用在许多博物馆,它的特点是良好的色彩再现,自然光照条件下,连续的光谱分布,和能源效率。虽然建筑照明设计专家组成部分应该咨询。照明效果比Windows更有效的垂直天窗。阳光直射的传输必须避免由于眩光。用于冷却的情况下,太阳能热增益必须被最小化。这可以通过固定或活动式遮阳装置做了。阳光控制玻璃没有额外的阴影和光扩散不能使用,如眩光是必然要发生的。活动遮阳装置,例如薄片,有很强的适应性和允许一个准确的日光控制,可用于温度控制,以及总光黑了。图9显示一个天窗展览室每年的照明和固定的遮阳设备,其目的是最大限度的保证外照射下400力士最大照度。在冬季,在覆盖的天空房间的照明很差的
52、日光条件(电)人工光被接通。i7H1441JliEilT&9LJfiOl43JI汕1.Sgj6HL301H21眺札lewgixno7WXW6&ZOO3K(Wjoooo2DQOOinopfi0Fig.9.Annualdistributionofhorizontaloutside(lightblue)andinsideillumination(darkblue),calculatedforaroomwithskylightandfixedshadingdeviceforallsolarpositions.
54、controlleddaylightingforasignificantlongertimeoftheyear.Fig.10showsanexampleofaskylightconstructionwithlightcontrol(positionsfromtopdown):Externalglazing(ventilated),movablesolarandglarecontrol(lamellas),highlyinsulatedglazing,conditionedairgap,artificialligh
56、lightsystemsareoftenintegratedthesamebuildingelements,e.g.skylights.AgoodexampleistheKunsthaus(arthouse)inBregenzwithasuspendedlightdiffusingceilingandaclearstoreyabove,distributingdaylightfromtheglazedfacadesandartificiallightsources(Fig.11).如图10所示的日光和人工照
57、明系统往往集成了相同的建筑元素,如天窗。一个很好的例子是在布雷根茨美术馆(艺术)与悬浮光漫射天花板和透明层以上,分布于玻璃幕墙和人工光源日光(图11)。Fig.11.Lightdiffusingceilingfordaylightingfromglazedfacedfacadeandartificiallightingfromclearstorey.KunshausBregenz,A.,Architect:PeterZumthor.图11光漫射天花板的玻璃立面采光和人工照明面临从清晰的层。kunshaus布雷根茨,A.,建筑师:彼得卒姆托。Artificiallightwillvaryalotdependingonthekindofmuseumroomandexhibit,andaccordinglytheenergyconsumptionwill.Theinstalledcapa