一元一次方程定义教案(通用8篇)

理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。

重点、难点

1、重点:弄清应用题题意列出方程。

2、难点:弄清应用题题意列出方程。

教学过程

一、复习

1、什么叫一元一次方程?

2、解一元一次方程的理论根据是什么?

二、新授。

例1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等

先让学生思考,引导学生结合填表,体会解决实际问题,重在学会探索:已知量和未知量的关系,主要的等量关系,建立方程,转化为数学问题。

分析:设应从A盘内拿出盐x,可列表帮助分析。

等量关系;A盘现有盐=B盘现有盐

完成后,可让学生反思,检验所求出的解是否合理。

(盘A现有盐为5l-3=48,盘B现有盐为45+3=48。)

培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。

例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖

引导学生弄清题意,疏理已知量和未知量:

1.题目中有哪些已知量

(1)参加搬砖的初一同学和其他年级同学共65名。

(2)初一同学每人搬6块,其他年级同学每人搬8块。

(3)初一和其他年级同学一共搬了400块。

2.求什么

初一同学有多少人参加搬砖

3.等量关系是什么

初一同学搬砖的块数十其他年级同学的搬砖数=400

如果设初一同学有工人参加搬砖,那么由已知量(1)可得,其他年级同学有(65-x)人参加搬砖;再由已知量(2)和等量关系可列出方程

6x+8(65-x)=400

也可以按照教科书上的列表法分析

三、巩固练习

教科书第12页练习1、2、3

第l题:可引导学生画线图分析

等量关系是:AC十CB=400

若设小刚在冲刺阶段花了x秒,即t1=x秒,则t2(65-x)秒,再

由等量关系就可列出方程:

6(65-x)+8x=400

四、小结

本节课我们学习了用一元一次方程解答实际问题,列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。

五、作业

一、课题名称:3.3解一元一次方程(二)——去括号与去分母

二、教学目的和要求:

1、知识目标

(1)通过对比运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力;

(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。

2、能力目标

(1)通过学生观察、独立思考等过程,培养学生归纳、慨括的能力;

(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。

3、情感目标

(1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;

(2)培养学生严谨的思维品质;

(3)通过学生间的相互交流、沟通,培养他们的协作意识。

三、教学重难点:

重点:去分母解方程。

难点:去分母时,不含分母的项会漏乘公分母,及没有对分子加括号。

四、教学方法与手段:

运用引导发现法,引进竞争机制,调动课堂气氛

五、教学过程:

1、创设情境,提出问题

问题1:我手中有6,x,30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快有对。

学生思考,根据自己对一元一次方程的理解程度自由编题。

问题2:解方程5(x-2)=8

解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。

问题3:某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少20__度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?

2、探索新知

(1)情境解决

问题1:设上半年每月平均用电x度,则下半年每月平均用电____度;上半年共用电____度,下半年共有电_____度。

问题2:教室引导学生寻找相等关系,列方程。

根据全年用电15万度,列方程,得6x+6(x-20__)=150000。

问题3:怎样使这个方程向x=a的形式转化呢?

6x+6(x-20__)=150000

↓去括号

6x+6x-12000=150000

↓移项

6x+6x=150000+12000

↓合并同类项

12x=162000

↓系数化为1

x=13500

问题4:本题还有其他列方程的方法吗?

用其他方法列出的方程应怎样解?

设下半年每月平均用电x度,则6x+6(x+20__)=150000。

(学生自己进行解决)

归纳结论:方程中有带括号的式子时,根据乘法分配率和去括号法则化简。(见“+”不变,见“—”全变)

去括号时要注意:

(1)不要漏乘括号内的任何一项;

(2)若括号前面是“—”号,记住去括号后括号内各项都变号。

(2)解一元一次方程——去括号

例题、解方程:3x—7(x—1)=3—2(x+3)。

解:去括号,得3x—7x+7=3—2x—6

移项,得3x—7x+2x=3—6—7

合并同类项,得—2x=—10

系数化为1,得x=5

3、变式训练,熟练技能

(1)解下列方程:

(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);

(2)3(2-3x)-3[3(2x-3)+3]=5;

(3)2(x+1)+3(x+2)-3=-4(x+3)。

(2)学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?

4、总结反思,情意发展

(1)本节课你学习了什么?

(2)本节课你有哪些收获?

(3)通过今天的学习,你想进一步探究的问题是什么?

可以归纳为如下几点:

①本节主要学习用去括号的方法解一元一次方程。

②主要用到的思想方法是转化思想。

③注意的问题:括号前是“—”号的,去括号时,括号内的各项要改变符号,乘数与括号内多项式相乘,乘数应乘遍括号内的各项;在实际问题中,要会找等量关系。

5、布置作业

(1)必做题:课本第98页习题3.3第

1、2题。

(2)选做题:

①解方程:3x-2[3(x-1)-2(x+2)]=3(18-x)。

②杭州新西湖建成后,某班40名同学划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?

六、课后小结:

本节课突出数学的应用意识。教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开

思考、讨论,进行学习。

强调学生主体意识的体现,在设计中,教师始终把学生放在主体的地位,让学生通过尝试得到解决,归纳出去括号解方程的特点,让学生通过合作与交流,得出问题的不同解答方法。

从设计上体现学生思维的层次性。教师首先引导学生尝试列出含未知数的式子,寻找相等关系列出方程。

一、教材分析

(一)教材的地位和作用

本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用。学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法。总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力。

(二)教材的重难点

本节的重点是探索并掌握列一元一次方程解决实际问题的方法。而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定“找出已知量与未知量之间的关系,尤其是相等关系”为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二。

二、教学目标分析

(一)知识技能目标

1.目标内容

(1)结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性。

(2)培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识。

2.目标分析

(1)本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径。

(2)七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力。

(二)过程目标

在活动中感受方程思想在数学中的作用,进一步增强应用意识。

利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决。

(三)情感目标

(1)在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心。

七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切。利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键。

三、教材处理与教法分析

本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ)。根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者。本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果。课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识。

教学目标

1.在具体情境中,进一步体会方程是刻画现实世界的重要数学模型。

2.知道什么是一元一次方程的标准形式,会通过移项、合并同类项把方程化为标准形式,然后利用等式的性质解方程。

教学重、难点

重点:把方程转化为标准形式。

难点:解方程的应用。

一激情引趣,导入新课

1解方程:9x+3=8+8x

2(1)上面解方程的过程中,每一步的依据是什么

(2)什么叫移项移项要注意什么

(3)2-4x+6+5x=8,变形为:-4x+5x+2+6=8,是不是移项

二合作交流,探究新知

1动脑筋:

某实验中学举行田径运动会,初一年级甲班和丙班参加的人数的和是乙班参加的人数的3倍,甲班有40人参加,乙班参加的人数比丙班参加的人数少10人,你能算出乙班参加校运会的人数吗

观察你解方程的过程,原方程做了哪些变形

形如ax=b(a≠0)的方程叫一元一次方程的_____形式。

2训练

(1)解方程:①11x-2=8x-8

(2)下列方程求解正确的是

A-2x=3,解得:x=,B解得:x=

C3x+4=4x-5解得:x=-9,D2x=3x+1,解得x=-1

三应用迁移,巩固提高

1方程的转化

例1已知x=-2是方程的解,求m的值。

例2若方程2x+a=,与方程的解相同,求a的值。

2实践应用

例3甲仓库有某种粮食120吨,乙仓库有同样的粮食96吨,甲仓库每天卖出粮食15吨,乙仓库每天卖出粮食9吨,多少天后,两仓库剩下的粮食相等

例4百年问题:我们明代数学家程大为曾提出过一个有趣的问题,有一个人赶着一群羊在前面走,另一个人牵着一头羊跟在后面,后面的人问赶羊的人说:“你这群羊有一百只吗”赶羊人回答“我再得这么一群羊,再得这群羊的一半,再得这群羊的四分之一,把你牵的羊

也给我,我恰好有一百只羊”,请问这群羊有多少只

四冲刺奥赛

例5当b=1时,关于x的方程a(3x-2)+b(2x-3)=8x-7,有无穷多个解,则a=

A2B–2CD不存在

例6解方程:3x+=4

例7用一队卡车运一批货物,若每辆卡车装7吨货物,则尚余10吨货物装不完,若每辆卡车装8吨货物,则最后一辆卡车只装3吨货物就装完了这批货物,那么这批货物共有多少吨

五课堂练习,巩固提高

P1121

六反思小结,拓展提高

1什么叫一元一次方程的标准形式解一元一次方程一般要转化成什么形式

教学目标:

1、理解什么是一元一次方程。

2、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。

3、进一步体会找等量关系,会用方程表示简单实际问题。

4、体会数学与我们日常生活联系密切,培养学习数学的兴趣。

教学重点:

一元一次方程及方程的解。

教学难点:

寻找问题中的相等关系,列方程。

学习过程:

回顾旧知:方程的概念是什么?

问题1:鸡兔同笼

“今有雉兔同笼,上有四十九头,下有一百足,问雉兔各几何?”(分别用算术方法和方程方法解决)

1、用等号“=”来表示相等关系的式子,叫等式。

2、像这样含有未知数的等式叫做方程

判断:下列各式是不是方程:

(1)-2+5=3;

(2)3x-1=0;

(3)y=3;

(4)x+y>2;

(5)2x-5y+1=0;

(6)xy-1=0;

(7)2m-n;

探究新知;

例1根据下列问题,设未知数并列出方程

(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?

(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?

解:

(1)设正方形的边长为xcm,然后发现相等关系:

4×边长=周长

可以利用这个相等关系,得到方程:4x=24

(3)设这个学校有x名学生,那么女生数就是0.52x,男生数是(1-0.52)x,可列方程:0.52x-(1-0.52)x=80观察上面三个方程有什么共同特点:

①只含有一个未知数;

②未知数的最高次数都是1。

只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。判断:下列各式是一元一次方程吗?

(1)2x+3y-1;(2)x2+2x+1=0;(3)x+2y=3;

(4)1-x=x+1;(5)x2+3=4;

(6)x+y=5;(7)1+7=15-8+1;

(8)2χ2-5χ+1=0做一做:

x=1000和x=20__中哪一个是方程0.52x-(1-0.52)x=80的解?

方程的解:使方程左右两边相等的未知数的值。检验一个数值是不是方程的解的步骤:

1.将数值代入方程左边进行计算,

2.将数值代入方程右边进行计算,

3.比较左右两边的值,若左边=右边,则是方程的解,反之,则不是。

练一练:

请你判断下列给定的t的值中,哪个是方程2t+1=7-t的解?

(1)t=-2(2)t=2(3)t=1

练习提高:

根据下列问题,设未知数,列出方程:

1、鸟巢里的环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?

2、甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支,问各买了多少支?

3、一个梯形下底比上底多2cm,高是5cm,面积是40平方厘米,求上底。小结:

1、方程的概念

2、一元一次方程的概念

3、方程的解的概念

学习目标

2.掌握等式的性质,理解掌握移项法则

3.会用等式的性质解一元一次昂成(数字系数),掌握解一元一次方程的基本方法

4.能够以一元一次方程为工具解决一些简单的实际问题,包括列方程、求解方程和解释结果的实际意义及合理性,提高分析问题、解决问题的能力

5.初步学会用方程的思想思考问题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结现实情境中的实际问题。

难点重点:

解方程、用方程解决实际问题

难点:用方程解决实际问题

教学流程

一、结合课本112页知识结构图和回顾与思考中的问题,复习本章的知识点,形成框架,巩固重点知识

二、典例回顾

1.一元一次方程的概念:

例1.试判断下列方程是否为一元一次方程。

(1)x=5

(2)x2+3x=2

(3)2x+3y=5

2.一元一次方程的解(根):

判断下列x值是否为方程3x-5=6x+4的解。

(1)x=3

(2)x=3

3.解一元一次方程的基本思路:

4.解决问题的基本步骤

例5:整理一批图书,由一个人做要40小时。现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率下共同,具体应先安排多少人工作

解:设先安排x人工作4小时。根据两段工作量之和应是总工作量,由此,列方程:

去分母,得4x+8(x+2)=40

去括号,得4x+8x+16=40

移项及合并,得12x=24

系数化为1,得x=2

答:应先安排2名工人工作4小时。

三、基础训练:课本第113页第1、2、3题。

四、综合训练:课本113页至114页4、5、6、7、8

五、达标训练:3.7

五、课堂小结:收获了哪些还有哪些需要再学习

1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;

2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;

3、培养学生获取信息,分析问题,处理问题的能力。

教学难点

均是从实际问题中寻找相等关系。

知识重点

(师生活动)

设计理念

情境引入教师提出教科收第66页的问题,并用多媒体直观演示,同进出现下图:

教师可以在学生回答的基础上做回顾小结

问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)

教师可以在学生回答的基础上做回顾小结:

1、问题涉及的三个基本物理量及其关系;

2、从知的信息中可以求出汽车的速度;

3、从路程的角度可以列出不同的算式:

问题3:能否用方程的知识来解决这个问题呢用多媒体演示的目的是使学生能直观地理解“匀速”的含义,为后面寻相等关系做准备。

培养学生读图的能力和思维的广阔性。

这样既可以复习小学的算术方法,又为后面与方程的比较打下伏笔。

提出问题:引出新课

学习新知

1、教师引导学生设未知数,并用含未知数的字母表示有关的数量。

如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米,王家庄距秀水千米。

2、教师引导学生寻找相等关系,列出方程。

问题1:题目中的“汽车匀速行驶”是什么意思

问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示你能表示其他各段路程的车速吗

问题3:根据车速相等,你能列出方程吗

教师根据学生的回答情况进行分析,如:

依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:

依据“王家庄至青山路段的车速=青山至秀水路段的车速”

可列方程:

3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念。

4、归纳列方程解决实际问题的两个步骤:

(1)用字母表示问题中的未知数(通常用x,y,z等字母);

(2)根据问题中的相等关系,列出方程。渗透列方程解决实际问题的思考程序。

理解题意是寻找相等的关系的前提。

考虑到学生寻找关系的难度,教师在此处有意加以引导。

教师要根据课堂教学的情况灵活处理,不能把学生的思维硬往教材上套。

举一反三讨论交流

1、比较列算式和列方程两种方法的特点。建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报。

列算式:只用已知数,表示计算程序,依据是间题中的数量关系;

列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

2、思考:对于上面的问题,你还能列出其他方程吗如果能,你依据的是哪个相等关系

建议按以下的顺序进行:

(1)学生独立思考;

(2)小组合作交流;

(3)全班交流。

如果直接设元,还可列方程:

如果设王家庄到青山的路程为x千米,那么可以列方程:

依据各路段的车速相等,也可以先求出汽车到达翠湖的时刻:

再列出方程=60

说明:要求出王家庄到翠湖的路程,只要解出方程中的x即可,我们在以后几节课中再来学习.通过比较能使学生学会到从算式到方程是数学的进步。

问题的开放性有利于培养学生思维的发散性。

初步应用

课堂练习

1、例题(补充):根据下列条件,列出关于x的方程:

(1)x与18的和等于54;

(2)27与x的差的一半等于x的4倍。

建议:本例题可以先让学生尝试解答,然后教师点评。

解:(1)x+18=54;

(2)(27-x)=4x。

列出方程后教师说明:“4x"表示4与x的积,当乘数中有字母时,通常省略乘号“X”,并把数字乘数写在字母乘数的前面.

2、练习(补充):

(1)列式表示:

①比a小9的数;

②x的2倍与3的和;

③5与y的差的一半;

④a与b的7倍的和。

(2)根据下列条件,列出关于x的方程:

(1)12与x的差等于x的2倍;

(2)x的三分之一与5的和等于6。补充例题(练习)的目的一方面是增加列式的机会,另一方面介绍列代数式的有关知识。

小结与作业

课堂小结可以采用师生问答的方式或先让学归纳,补充,然后教师补充的方式进行,主要围绕以下问题:

1、本节课我们学了什么知识

2、你有什么收获

说明方程解决许多实际问题的工具。

本课作业1、必做题:阅读教科书上70页的《阅读与思考》;第73页习题2.1第1,5题。

2、选做题:根据下列条件,用式表示问题的结果:

(1)一打铅笔有12支,m打铅笔有多少支

(2)某班有a名学生,要求平均每人展出4枚邮票,实际展出的邮标量比要求数多了15枚,问该班共展出多少枚邮票

(3)根据下列条件列出方程:小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入。

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1、突出问题的应用意识。教师首先用一个学生感兴趣的实际问题引人课题,然后运用算术的方法给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习。

2、体现学生的主体意识。本设计中,教师始终把学生放在主体的地位:让学生通过对列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作与交流,得出问题的不同解答方法;让学生对一节课的学习内容、方法、注意点等进行归纳。

3、体现学生思维的层次性。教师首先引导学生尝试用算术方法解决间题,然后再逐步。

引导学生列出含未知数的式子,寻找相等关系列出方程。在寻找相等关系、设未知数及作业的布置等环节中,教师都注意了学生思维的层次性。

4、渗透建模的思想。把实际间题中的`数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力。

一、目标:

知识目标:能熟练地求解数字系数的一元一次方程(不含去括号、去分母)。

过程方法目标:经历和体会解一元一次方程中“转化”的思想方法。

情感态度目标:在数学活动中获得成功的喜悦,增强自信心和意志力,激发学习兴趣。

二、重难点:

重点:学会解一元一次方程

难点:移项

三、学情分析:

知识背景:学生已学过用等式的性质来解一元一次方程。

能力背景:能比较熟练地用等式的性质来解一元一次方程。

预测目标:能熟练地用移项的方法来解一元一次方程。

四、教学过程:

(一)创设情景

一头半岁蓝鲸的体重是22t,90天后的体重是30.1t,蓝鲸的体重平均每天增加多少?

(二)实践探索,揭示新知

1.例2.解方程:看谁算得又快:

解:方程的两边同时加上得解:6x2=10

移项得6x=10+2

即合并同类项得

化系数为1得

大家看一下有什么规律可寻?可以讨论

2.移项的概念:根据等式的基本性质方程中的某些项改变符号后,可以从方程的一边移到另一边,这样的变形叫做移项。

THE END
1.一元一次方程的定义1.所谓方程,就是含有未知数的等式.方程的种类很多,而我们现在所研究的一元一次方程属于整式方程,即方程两边都是整式.一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式.这里a是未知数的系数,b是常数.https://www.zybang.com/question/684d2f8db04a1a3ee4e14dab65dfd4de.html
2.一元一次方程的定义一元一次方程|《一元一次方程》说课稿2021-06-11 学校领导与教师谈心谈话记录内容(合集三篇)2023-02-01 高校教师师德总结精选五篇2023-02-01 高校教师师德总结(合集三篇)2023-02-01 中小学教师培训年度总结【汇编三篇】2023-02-01 教师嘉奖奖励主要事迹精选五篇2023-02-01 高考百日誓师教师发言【6篇】2023-http://www.sudunlaoyingcha.com/k/yiyuanyicifangchengdedingyi/
3.数学一元一次方程的定义12众享题库解一元一次方程(646) 一元一次方程的定义(129) 含绝对值符号的一元一次方程(8) 同解方程(65) 一元一次方程应用--等积等容问题(6) 一元一次方程应用--数字规律问题(9) 一元一次方程应用--打折问题(10) 一元一次方程应用--利率问题(6) 一元一次方程应用——行程问题(33) 一元一次方程应用--鸡兔同笼https://c.xxt.cn/questlist--3---469---12.html
4.一元一次方程的定义是什么有什么解法一元一次方程的定义是只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,一元一次方程只有一个根,一元一次方程可以解决绝大多数的工程问题。一元一次方程最早见于约公元前1600年的古埃及时期,可以通过等式性质化简而成为一元一次方程的整式方程也属于一元一次方程。 http://m.chusan.com/zhongkao/331026.html
5.什么是一元一次方程定义一元一次方程定义是:只含有一个未知数,且未知数的最高次数是1的整式方程叫做一元一次方程。一般形式ax+b=0(a、b为常数,a≠0),此时有唯一解。不过对于一些方程,可以化为特殊的一元一次方程,如0x=b或0x=0,前者无解,后者有无穷多解。 解一个一元一次方程的一般步骤是: https://edu.iask.sina.com.cn/bdjx/CXx34uXrv6.html
6.什么是一元一次方程定义什么是一元一次方程定义 一元一次方程的定义是一个包含单一变量的线性方程,该方程由常数、变量以及一次方项的系数组成。一元一次方程满足形式为 ax + b = 0,https://jttv.org.cn/tag/shimeshiyiyuanyicifangchengdingyi/
7.一元一次方程定义的理解与应用初中生世界2020年45期一元一次方程定义的理解与应用,一元一次方程,理解与应用,数学教材,大家都知道,现在小学的数学教材里就已经有一元一次方程的内容了。那时候的学习,老师主要要求我们掌握如何去解方程以及列方程解应https://read.cnki.net/web/Journal/Article/CZSJ202045031.html
8.一元一次方程定义与知识点.doc系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a. 定义 :只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程。通常形式是kx+b=0(k,b为常数,且kM0)。 一般解法 :1?去分母方程两边同时乘各分母的最小公倍数。2?去括号一般 http://taodocs.com/p-666090014.html
9.一元一次方程定义教案作为一名默默奉献的教育工作者,总不可避免地需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。教案应该怎么写呢?下面是小编为大家收集的一元一次方程定义教案,欢迎大家借鉴与参考,希望对大家有所帮助。 学习目标 1、了解一元一次方程及其相关概念 https://www.oh100.com/kaoshi/jiaoan/632320.html
10.一元一次方程定义与知识点.doc设计者仅对作品中独创性部分享有著作权。 关键 词: 一元一次方程 定义 知识点 温州文客信息科技有限公司所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。 关于本文 本文标题:一元一次方程定义与知识点.doc 链接地址:https://www.wenke99.com/p-13695343.htmlhttps://m.wenke99.com/p-13695343.html
11.初中数学一元一次方程定义和相关知识点一元二次方程 解方程 初中阶段我们主要学习了一元一次方程、二元一次方程组和一元二次方程等方程式,相对而言初中数学一元一次方程比较简单,下面我们一起来学习初中数学一元一次方程定义和相关知识。 初中数学一元一次方程定义 只含有一个未知数、未知数的最高次数为1且两边都为整式的等式叫做一元一次方程,一般表达式https://www.xhwx100.com/article/199.html
12.一元一次方程方程的定义知识点总结1/25 一、单选题(每题 4 分) 1.(2010秋?江岸区校级期中)已知2+1=1+2,4﹣x=1,y2﹣1=3y+1,x+1,方程有() A.1个 B.2个 C.3个 D.4个 选择: A B C Dhttp://wap.tongzhuo100.com/ex/know_test.php?title=415
13.数学七年级:一元一次方程定义,一元一次方程要满足什么条件数学七年级:一元一次方程定义,一元一次方程要满足什么条件。听TED演讲,看国内、国际名校好课,就在网易公开课https://open.163.com/newview/movie/free?pid=TFTQ8I41I&mid=TFTQ8I41P
14.七年级数学上册专题3.2一元一次方程与新定义(强化)(解析版).docx内容提供方:稳如老狗 大小:1.66 MB 字数:约6.11千字 发布时间:2023-09-12发布于贵州 浏览人气:86 下载次数:仅上传者可见 收藏次数:0 需要金币:*** 金币 (10金币=人民币1元)七年级数学上册专题3.2 一元一次方程与新定义(强化)(解析版).docx 关闭预览 想预览更多内容,点击免费在线预览全文 https://max.book118.com/html/2023/0911/5221023134010324.shtm
15.一元一次方程思维导图下图为小学数学一元一次方程思维导图,清晰地梳理出了一元一次方程的定义、等式的基本性质、解方程、方程的解和在生活中的应用等内容的脉络。跟着这份思维导图高效学习,攻克数学难关。 亿图脑图MindMaster原创思维导图社区提供海量优质的思维导图模板资源,一个各类脑图创https://mm.edrawsoft.cn/template/3072
16.线性拟合的本质是线性回归吗线性拟合的定义线性拟合的本质是线性回归吗 线性拟合的定义 2. 线性模型 (一元一次方程) 2.1 线性方程 如下直线方程属于·线性方程: 图像可表示为: 2.2 线性拟合 在实际应用中,输入和输出可以用线性模型进行拟合,称之为线性模型或线性问题(如房屋面积与总价、成年人的身高与体重)https://blog.51cto.com/u_19261/10617859
17.一次函数知识点总结4、求一次函数与正比例函数的关系式,一般采取待定系数法。 数形结合 方程,不等式,不等式组,方程组我们都可以用一次函数的观点来理解。一元一次不等式实际上就看两条直线上下方的关系,求出端点后可以很容易把握解集,至于一元一次方程可以把左右两边看为两条直线来认识,直线交点的横坐标就是方程的解,至于二元一次https://www.ruiwen.com/zhishidianzongjie/6327677.html
18.一元一次方程的定义答案解析 查看更多优质解析 解答一 举报 通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程.通常形式是ax+b=0(a,b为常数,且a≠0). 解析看不懂?免费查看同类题视频解析查看解答 相似问题 一元一次方程的概念:_. 求一元一次方程的定义 一元一次方程的概念:_. https://qb.zuoyebang.com/xfe-question/question/1f4143cff1b07493a17143993b9aeae1.html