图形找规律专项练习60题(共20页)

2、0条线段;…照此规律,画10个不同点,可得线段_________条.4.如图是由数字组成的三角形,除最顶端的1以外,以下出现的数字都按一定的规律排列.根据它的规律,则最下排数字中x的值是_________,y的值是_________.5.下列图形都是由相同大小的单位正方形构成,依照图中规律,第六个图形中有_________个单位正方形.6.如图,用相同的火柴棒拼三角形,依此拼图规律,第7个图形中共有_________根火柴棒.7.图1是一个正方形,分别连接这个正方形的对边中点,得到图2;分别连接图2中右下角的小正方形对边中点

3、,得到图3;再分别连接图3中右下角的小正方形对边中点,得到图4;按此方法继续下去,第n个图的所有正方形个数是_________个.8.观察下列图案:它们是按照一定规律排列的,依照此规律,第6个图案中共有_________个三角形.9.如图,依次连接一个边长为1的正方形各边的中点,得到第二个正方形,再依次连接第二个正方形各边的中点,得到第三个正方形,按此方法继续下去,则第二个正方形的面积是_________;第六个正方形的面积是_________.10.下列各图形中的小正方形是按照一定规律排列的,根据图形所揭示的规律我们可以发现:第1

4、个图形有1个小正方形,第2个图形有3个小正方形,第3个图形有6个小正方形,第4个图形有10个小正方形…,按照这样的规律,则第10个图形有_________个小正方形.11.如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数为_________.12.为庆祝“六一”儿童节,幼儿园举行用火柴棒摆“金鱼”比赛,如图所示,则摆n条“金鱼”需用火柴棒的根数为_________.13.如图,两条直线相交只有1个交点,三条直线相交最多有3个交点,四条直线相交最多有6个交点,五条直线相交最多有10个交点,六条直线相交最多有_________

5、个交点,二十条直线相交最多有_________个交点.14.用火柴棒按如图所示的方式搭图形,按照这样的规律搭下去,填写下表:图形编号(1)(2)(3)…n火柴根数从左到右依次为____________________________________.15.图(1)是一个黑色的正三角形,顺次连接三边中点,得到如图(2)所示的第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形.如此继续作下去,则在得到的第5个图形中,白色的

6、正三角形的个数是_________.16.如图,一块圆形烙饼切一刀可以切成2块,若切两刀最多可以切成4块,切三刀最多可以切成7块…通过观察、计算填下表(其中S表示切n刀最多可以切成的块数)后,可探究一圆形烙饼切n刀最多能切成_________块(结果用n的代数式表示).n012345…nS124717.如图,是用相同的等腰梯形拼成的等腰梯形图案.第(1)个图案只有1个等腰梯形,其两腰之和为4,上下底之和为3,周长为7;第(2)个图案由3个等腰梯形拼成,其周长为13;…第(n)个图案由(2

7、n﹣1)个等腰梯形拼成,其周长为_________.(用正整数n表示)18.下列各图均是用有一定规律的点组成的图案,用S表示第n个图案中点的总数,则S=_________(用含n的式子表示).19.如图,由若干盆花摆成图案,每个点表示一盆花,几何图形的每条边上(包括两个顶点)都摆有n(n≥3)盆花,每个图案中花盆总数为S,按照图中的规律可以推断S与n(n≥3)的关系是_________.20.用火柴棍象如图这样搭图形,搭第n个图形需要_________根火柴棍.21.现有黑色三角形“”和白色三角形“”共有2011个,按照一

8、定的规律排列如下:则黑色三角形有_________个.22.假设有足够多的黑白围棋子,按照一定的规律排成一行:○●●○○●○●●○○●○●●○○●○●●○○●…请问第2011个棋子是黑的还是白的?答:_________.23.观察下列由等腰梯形组成的图形和所给表中数据的规律后填空:梯形的个数12345…图形的周长58111417…当梯形个数为2007个时,这时图形的周长为_________24.如图,下面是一些小正方形组成的图案,第4个图案有_________个小正方形组成

9、;第n个图案有_________个小正方形组成.25.如图所示是由火柴棒按一定规律拼出的一系列图形:依照此规律,第7个图形中火柴棒的根数是_________.26.图中的每个图形都是由若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有n(n≥2)个棋子,每个图案的棋子总数为s,按图的排列规律推断,s与n之间的关系可用式子_________表示.27.观察下列图形,它是按一定规律排列的,那么第_________个图形中,十字星与五角星的个数和为27个.28.2条直线最多只有1个交点;3条直线最多只有3个交点;4条直线

10、最多只有6个交点;2000条直线最多只有_________个交点.29.以下各图分别由一些边长为1的小正方形组成,请填写图2、图3中的周长,并以此推断出图10的周长为_________.30.如图所示,第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么设第n个图案中有白色地面砖m块,则m与n的函数关系式是_________.31.用同样大小的黑色棋子按如图所示的规律摆放:(1)分别写出第6、7两个图形各有多少颗黑色棋子?(2)写出第n个图形黑色棋子的颗数?(3)是否存在某个

11、图形有2012颗黑色棋子?若存在,求出是第几个图形;若不存在,请说明理由.32.如图,给出四个点阵,s表示每个点阵中点的个数,按照图形中的点的个数变化规律,(1)猜想第n个点阵中的点的个数s=_________.(2)若已知点阵中点的个数为37,问这个点阵是第几个?33.用棋子摆出下列一组图形:(1)填写下表:图形编号123456图中棋子数5811141720(2)照这样的方式摆下去,写出摆第n个图形所需棋子的枚数;(3)其中某一图形可能共有2011枚棋子吗?若不可能,请说

12、明理由;若可能,请你求出是第几个图形.34.观察图中四个顶点的数字规律:(1)数字“30”在_________个正方形的_________;(2)请你用含有n(n≥1的整数)的式子表示正方形四个顶点的数字规律;(3)数字“2011”应标在什么位置.35.如图,各图表示若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案中花盆的总数为S.问:①当每条边有2盆花时,花盆的总数S是多少?②当每条边有3盆花时,花盆的总数S是多少?③当每条边有4盆花时,花盆的总数S是多少?④当每条边有10盆

13、花时,花盆的总数S是多少?⑤按此规律推断,当每条边有n盆花时,花盆的总数S是多少?36.如下图是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第④、第⑤个“上”字分别需用_________和_________枚棋子;(2)第n个“上”字需用_________枚棋子;(3)七(3)班有50名同学,把每一位同学当做一枚棋子,能否让这50枚“棋子”按照以上规律恰好站成一个“上”字?若能,请计算最下一“横”的学生数;若不能,请说明理由.37.下列表格是一张对同一线段上的个数变化及线段总

14、条数的探究统计.线段上点的个数线段的总条数11+2=31+2+3=6……(1)请你完成探究,并把探究结果填在相应的表格里;(2)若在同一线段上有10个点,则线段的总条数为_________;若在同一线段上有n个点,则有_________条线段(用含n的式子表示)(3)若你所在的班级有60名学生,20年后参加同学聚会,见面时每两个同学之间握一次手,共握手_________次.38.如图是用棋子摆成的“H”字.(1)摆成第一个“H”字需要_________个棋子;摆第x个“H”字需要

15、的棋子数可用含x的代数式表示为_________;(2)问第几个“H”字棋子数量正好是2012个棋子?39.我们知道,两条直线相交只有一个交点.请你探究:(1)三条直线两两相交,最多有_________个交点;(2)四条直线两两相交,最多有_________个交点;(3)n条直线两两相交,最多有_________个交点(n为正整数,且n≥2).40.如图所示,小王玩游戏:一张纸片,第一次将其撕成四小片,手中共有4张纸片,以后每次都将其中一片撕成更小的四片.如此进行下去,当小王撕到第n次时,手张共有S张纸片.根据上述情况:

16、(1)用含n的代数式表示S;(2)当小王撕到第几次时,他手中共有70张小纸片?41.如图①是一张长方形餐桌,四周可坐6人,2张这样的桌子按图②方式拼接,四周可坐10人.现将若干张这样的餐桌按图③方式拼接起来:(1)三张餐桌按题中的拼接方式,四周可坐_________人;(2)n张餐桌按上面的方式拼接,四周可坐_________人(用含n的代数式表示).若用餐人数为26人,则这样的餐桌需要_________张.42.用棋子摆出下列一组图形:(1)填写下表:图形编号123456图

17、形中的棋子(2)照这样的方式摆下去,写出摆第n个图形棋子的枚数;(用含n的代数式表示)(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?43.如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,(1)第5个“广”字中的棋子个数是_________.(2)第n个“广”字需要多少枚棋子?44.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察图形并解答有关问题:(1)在第n个图中共有_________块黑瓷砖,_________块白瓷砖;

18、(2)是否存在黑瓷砖与白瓷砖块数相等的情形?你能通过计算说明吗?45.用火柴棒按如图的方式搭三角形.照这样搭下去:(1)搭4个这样的三角形要用_________根火柴棒;13根火柴棒可以搭_________个这样的三角形;(2)搭n个这样的三角形要用_________根火柴棒(用含n的代数式表示).46.观察图中的棋子:(1)按照这样的规律摆下去,第4个图形中的棋子个数是多少?(2)用含n的代数式表示第n个图形的棋子个数;(3)求第20个图形需棋子多少个?47.如图,用正方体石墩垒石梯,下图分

19、别表示垒到一、二、三阶梯时的情况.那么照这样垒下去,请你观察规律,并完成下列问题.(1)填出下表中未填的两个空格:阶梯级数一级二级三级四级石墩块数39(2)当垒到第n级阶梯时,共用正方体石墩多少块(用含n的代数式表示)?并求当n=100时,共用正方体石墩多少块?48.有一张厚度为0.05毫米的纸,将它对折1次后,厚度为20.05毫米.(1)对折3次后,厚度为多少毫米?(2)对折n次后,厚度为多少毫米?(3)对折n次后,可以得到多少条折痕?49.如图所示,用同样规格正方形瓷砖铺设矩

20、形地面,请观察下图:按此规律,第n个图形,每一横行有_________块瓷砖,每一竖列有_________块瓷砖(用含n的代数式表示)按此规律,铺设了一矩形地面,共用瓷砖506块,请问这一矩形的每一横行有多少块瓷砖,每一竖列有多少瓷砖?50.找规律:观察下面的星阵图和相应的等式,探究其中的规律.(1)在④、⑤和⑥后面的横线上分别写出相应的等式:①1=12②1+3=22③1+3+5=32④_________;⑤_________;⑥_________;(2)通过猜想,写出第n个星阵图相对应的等式.

21、51.将一张正方形纸片剪成四个大小一样的小正方形,然后将其中的一个正方形再剪成四个小正方形,如此循环下去,如图所示:(1)完成下表:所剪次数n12345正方形个数Sn4(2)剪n次共有Sn个正方形,请用含n的代数式表示Sn=_________;(3)若原正方形的边长为1,则第n次所剪得的正方形边长是_________(用含n的代数式表示).52.如图是用五角星摆成的三角形图案,每条边上有n(n>1)个点(即五角星),每个图案的总点数(即五角星总数)用S表示.(1)观察图案,当n=6时,

22、S=_________;(2)分析上面的一些特例,你能得出怎样的规律?(用n表示S)(3)当n=2008时,求S.53.用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点.观察图中每一个正方形(实线)四条边上的格点的个数,请回答下列问题:(1)由里向外第1个正方形(实线)四条边上的格点个数共有_________个;由里向外第2个正方形(实线)四条边上的格点个数共有_________个;由里向外第3个正方形(实线)四条边上的格点个数共有_________个;(2)由里向外第10个正方形(实线)四条边上的格点个数共有___

23、______个;(3)由里向外第n个正方形(实线)四条边上的格点个数共有_________个.54.下列各图是由若干花盆组成的形如正方形的图案,每条边(包括两个顶点)有n(n>1)个花盆,每个图案花盆总数是S.(1)按要求填表:n2345…S4812…(2)写出当n=10时,S=_________.(3)写出S与n的关系式:S=_________.(4)用42个花盆能摆出类似的图案吗?55.如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图

24、形,探究并解答下列问题.(1)在第1个图中,共有白色瓷砖_________块.(2)在第2个图中,共有白色瓷砖_________块.(3)在第3个图中,共有白色瓷砖_________块.(4)在第10个图中,共有白色瓷砖_________块.(5)在第n个图中,共有白色瓷砖_________块.56.淮北市为创建文明城市,各种颜色的菊花摆成如下三角形的图案,每条边(包括两个顶点)上有n(n>1)盆花,每个图案花盆的总数为S,当n=2时,S=3;n=3时,S=6;n=4时,S=10.(1)当n=6时,S=________

25、_;n=100时,S=_________.(2)你能得出怎样的规律?用n表示S.57.下面是按照一定规律画出的一系列“树枝”经观察,图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出4个“树枝”,图(4)比图(3)多出8个“树枝”,按此规律:图(5)比图(4)多出_________个树枝;图(6)比图(5)多出_________个树枝;图(8)比图(7)多出_________个树枝;…图(n+1)比图(n)多出_________个树枝.58.如图是用棋子成的“T”字图案.从图案中可以出,第

26、一个“T”字图案需要5枚棋子,第二个“T”字图案需要8枚棋子,第三个“T”图案需要11枚棋子.(1)照此规律,摆成第八个图案需要几枚棋子?(2)摆成第n个图案需要几枚棋子?(3)摆成第2010个图案需要几枚棋子?59.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:(1)当黑砖n=1时,白砖有_________块,当黑砖n=2时,白砖有_________块,当黑砖n=3时,白砖有_________块.(2)第n个图案中,白色地砖共_________块.60.下列图案是晋商大院窗

27、格的一部分.其中,“o”代表窗纸上所贴的剪纸.探索并回答下列问题:(1)第6个图案中所贴剪纸“o”的个数是_________;(2)第n个图案中所贴剪纸“o”的个数是_________;(3)是否存在一个图案,其上所贴剪纸“o”的个数为2012个?若存在,指出是第几个;若不存在,请说明理由.专心---专注---专业图形找规律60题参考答案:1.结合图形和表格,不难发现:1张桌子座6人,多一张桌子多2人.4张桌子可以座10+2=12.即n张桌子时,共座6+2(n﹣1)=2n+4.2.当横截线有n条时,在6个的基础上多了n个6,即三角形的个数

28、共有6+6n=6(n+1)个.故应填6(n+1)或6n+63.∵画1个点,可得3条线段,2+1=3;画2个点,可得6条线段,3+2+1=6;画3个点,可得10条线段,4+3+2+1=10;…;画n个点,则可得(1+2+3+…+n+n+1)=条线段.所以画10个点,可得=66条线段;4.根据图形可以发现,第七排的第一个数和第二数与第八排的第二个数相等,而第八排的第二个数就是x,所以x=61.另外,由图形可知,x右边的数是261=122,y左边的数是261+56=178,所以y=178+46=2245.根据题意分析可得:第1个图案中正方形的个数2个

29、,第2个图案中正方形的个数比第1个图案中正方形的个数多4个,第3个图案中正方形的个数比第2个图案中正方形的个数多6个…,依照图中规律,第六个图形中有2+4+6+8+10+12=42个单位正方形6.图形从上到下可以分成几行,第n行中,斜放的火柴有2n根,下面横放的有n根,因而图形中有n排三角形时,火柴的根数是:斜放的是2+4+…+2n=2(1+2+…+n)横放的是:1+2+3+…+n,则每排放n根时总计有火柴数是:3(1+2+…+n)=把n=7代入就可以求出.故第7个图形中共有=84根火柴棒7.图1中,是1个正方形;图2中,是1+4=5个正方形;图3中,是1+42=9个

30、正方形;依此类推,第n个图的所有正方形个数是1+4(n﹣1)=4n﹣3.8.∵第1个图案中有22+21=6个三角形;第2个图案中有23+22=10个三角形;第3个图案中有24+23=14个三角形;…∴第6个图案中有27+26=26个三角形.故答案为269.∵正方形的边长是1,所以它的斜边长是:=,所以第二个正方形的面积是:=,第三个正方形的面积为=()2,以此类推,第n个正方形的面积为()n﹣1,所以第六个正方形的面积是()6﹣1=;故答案为:,.10.∵第一个有1个小正方形,第二个有1+2个,第三个有1+2+3个,第四个有1+

31、2+3+4,第五个有1+2+3+4+5,∴则第10个图形有1+2+3+4+5+6+7+8+9+10=55个.故答案为:5511.依题意得:(1)摆第1个“小屋子”需要5个点;摆第2个“小屋子”需要11个点;摆第3个“小屋子”需要17个点.当n=n时,需要的点数为(6n﹣1)个.故答案为6n﹣112.由图形可知:第一个金鱼需用火柴棒的根数为:2+6=8;第二个金鱼需用火柴棒的根数为:2+26=14;第三个金鱼需用火柴棒的根数为:2+36=20;…;第n个金鱼需用火柴棒的根数为:2+n6=2+6n.故答案为2+6n13.6条直线两两

32、相交,最多有n(n﹣1)=65=15,20条直线两两相交,最多有n(n﹣1)=2019=190.故答案为:15,190.14.如表格所示:图形编号(1)(2)(3)…n火柴根数71217…5n+215.设白三角形x个,黑三角形y个,则:n=1时,x=0,y=1;n=2时,x=0+1=1,y=3;n=3时,x=3+1=4,y=9;n=4时,x=4+9=13,y=27;当n=5时,x=13+27=40,所以白的正三角形个数为:40,故答案为:4016.n=1时,S=1+1=2,n=2时,S=1+

33、1+2=4,n=3时,S=1+1+2+3=7,n=4时,S=1+1+2+3+4=11,…所以当切n刀时,S=1+1+2+3+4+…+n=1+n(n+1)=n2+n+1.故答案为n2+n+117.根据题意得:第(1)个图案只有1个等腰梯形,周长为31+4=7;第(2)个图案由3个等腰梯形拼成,其周长为33+4=13;第(3)个图案由5个等腰梯形拼成,其周长为35+4=19;…第(n)个图案由(2n﹣1)个等腰梯形拼成,其周长为3(2n﹣1)+4=6n+1;故答案为:6n+118.观察发现:第1个图形有S=91+1=10个点,第2个图形

34、有S=92+1=19个点,第3个图形有S=93+1=28个点,…第n个图形有S=9n+1个点.故答案为:9n+119.n=3时,S=6=33﹣3=3,n=4时,S=12=44﹣4,n=5时,S=20=55﹣5,…,依此类推,边数为n数,S=nn﹣n=n(n﹣1).故答案为:n(n﹣1).20.结合图形,发现:搭第n个三角形,需要3+2(n﹣1)=2n+1(根).故答案为2n+121.因为20116=335…1.余下的1个根据顺序应是黑色三角形,所以共有1+3353=1006.故答案为:100622.从所给的图中可以看出,每六个

35、棋子为一个循环,∵20116=335…1,∴第2011个棋子是白的.故答案为:白23.依题意可求出梯形个数与图形周长的关系为3n+2=周长,当梯形个数为2007个时,这时图形的周长为32007+2=6023.故答案为:6023.24.观察图形知:第一个图形有1=12个小正方形;第二个图形有1+3=4=22个小正方形;第三个图形有1+3+5=9=32个小正方形;…第n个图形共有1+2+3+…+(2n﹣1)=n2个小正方形,当n=4时,有n2=42=16个小正方形.故答案为:16,n225.根据已知图形可以发现:第2个图形中,火柴棒

36、的根数是7;第3个图形中,火柴棒的根数是10;第4个图形中,火柴棒的根数是13;∵每增加一个正方形火柴棒数增加3,∴第n个图形中应有的火柴棒数为:4+3(n﹣1)=3n+1.当n=7时,4+3(n﹣1)=4+36=22,故答案为:2226.观察图形发现:当n=2时,s=4,当n=3时,s=9,当n=4时,s=16,当n=5时,s=25,…当n=n时,s=n2,故答案为:s=n227.∵第1个图形中,十字星与五角星的个数和为32=6,第2个图形中,十字星与五角星的个数和为33=9,第3个图形中,十字星与五角星的个数和为34=

37、12,…而27=39,∴第8个图形中,十字星与五角星的个数和=39=27.故答案为:828.2条直线最多的交点个数为1,3条直线最多的交点个数为1+2=3,4条直线最多的交点个数为1+2+3=6,5条直线最多的交点个数为1+2+3+4=10,…所以2000条直线最多的交点个数为1+2+3+4+…+1999==.故答案为29.∵小正方形的边长是1,∴图1的周长是:14=4,图2的周长是:24=8,图3的周长是34=12,…第n个图的周长是4n,∴图10的周长是104=40;故答案为:8,12,4030.首先发现:第

38、一个图案中,有白色的是6个,后边是依次多4个.所以第n个图案中,是6+4(n﹣1)=4n+2.∴m与n的函数关系式是m=4n+2.故答案为:4n+2.31.第一个图需棋子6,第二个图需棋子9,第三个图需棋子12,第四个图需棋子15,第五个图需棋子18,…第n个图需棋子3(n+1)枚.(1)当n=6时,3(6+1)=21;当n=7时,3(7+1)=24;(2)第n个图需棋子3(n+1)枚.(3)设第n个图形有2012颗黑色棋子,根据(1)得3(n+1)=2012解得n=,所以不存在某个图形有2012颗黑色棋子32.(1)

39、由点阵图形可得它们的点的个数分别为:1,5,9,13,…,并得出以下规律:第一个点数:1=1+4(1﹣1)第二个点数:5=1+4(2﹣1)第三个点数:9=1+4(3﹣1)第四个点数:13=1+4(4﹣1)…因此可得:第n个点数:1+4(n﹣1)=4n﹣3.故答案为:4n﹣3;(2)设这个点阵是x个,根据(1)得:1+4(x﹣1)=37解得:x=10.答:这个点阵是10个33.(1)观察图形,得出枚数分别是,5,8,11,…,每个比前一个多3个,所以图形编号为5,6的棋字子数分别为17,20.故答案为:17和20.(2)由(1)得,图中

40、棋子数是首项为5,公差为3的等差数列,所以摆第n个图形所需棋子的枚数为:5+3(n﹣1)=3n+2.(3)不可能由3n+2=2010,解得:n=669,∵n为整数,∴n=669不合题意故其中某一图形不可能共有2011枚棋子34.(1)由图可知,每个正方形标4个数字,∵304=7…2,∴数字30在第8个正方形的第2个位置,即右上角;故答案为:8,右上角;(2)左下角是4的倍数,按照逆时针顺序依次减1,即正方形左下角顶点数字:4n,正方形左上角顶点数字:4n﹣1,正方形右上角顶点数字:4n﹣2,正方形右下角顶点数字:4n﹣3;(3

41、)20114=502…3,所以,数字“2011”应标第503个正方形的左上角顶点处35.依题意得:①n=2,S=3=32﹣3.②n=3,S=6=33﹣3.③n=4,S=9=34﹣3④n=10,S=27=310﹣3.…⑤按此规律推断,当每条边有n盆花时,S=3n﹣336.(1)第①个图形中有6个棋子;第②个图形中有6+4=10个棋子;第③个图形中有6+24=14个棋子;∴第⑤个图形中有6+34=18个棋子;第⑥个图形中有6+44=22个棋子.故答案为18、22;(3分)(2)第n个图形中有6+(n﹣1)4=4n+2.故答案为4n+2.(

42、3分)(3)4n+2=50,解得n=12.最下一横人数为2n+1=25.(4分)37.(1)5个点时,线段的条数:1+2+3+4=10,6个点时,线段的条数:1+2+3+4+5=15;(2)10个点时,线段的条数:1+2+3+4+5+6+7+8+9=45,n个点时,线段的条数:1+2+3+…+(n﹣1)=;(3)60人握手次数==1770.故答案为:(2)45,;(3)1770.38.(1)摆成第一个“H”字需要7个棋子,第二个“H”字需要棋子12个;第三个“H”字需要棋子17个;…第x个图中,有7+5(x﹣1)=5x+2(个).(

43、2)当5x+2=2012时,解得:x=402,故第402个“H”字棋子数量正好是2012个棋子39.(1)如图(1),可得三条直线两两相交,最多有3个交点;(2)如图(2),可得三条直线两两相交,最多有6个交点;(3)由(1)得,=3,由(2)得,=6;∴可得,n条直线两两相交,最多有个交点(n为正整数,且n≥2).故答案为3;6;.40.(1)由题目中的“每次都将其中﹣片撕成更小的四片”,可知:小王每撕一次,比上一次多增加3张小纸片.∴s=4+3(n﹣1)=3n+1;(2)当s=70时,有3n+1=70,n=23.即小王撕纸23次41

44、.(1)结合图形,发现:每个图中,两端都是坐2人,剩下的两边则是每一张桌子是4人.则三张餐桌按题中的拼接方式,四周可坐34+2=14(人);(2)n张餐桌按上面的方式拼接,四周可坐(4n+2)人;若用餐人数为26人,则4n+2=26,解得n=6.故答案为:14;(4n+2),642.(1)如图所示:图形编号123456图形中的棋子6912151821(2)依题意可得当摆到第n个图形时棋子的枚数应为:6+3(n﹣1)=6+3n﹣3=3n+3;(3)由上题可知此时3n+3=99,∴n=32.

45、答:第32个图形共有99枚棋子13.由题目得:第1个“广”字中的棋子个数是7;第2个“广”字中的棋子个数是7+(2﹣1)2=9;第3个“广”字中的棋子个数是7+(3﹣1)2=11;第4个“广”字中的棋子个数是7+(4﹣1)2=13;发现第5个“广”字中的棋子个数是7+(5﹣1)2=15…进一步发现规律:第n个“广”字中的棋子个数是7+(n﹣1)2=2n+5.故答案为:1544.(1)在第n个图形中,需用黑瓷砖4n+6块,白瓷砖n(n+1)块;(2)根据题意得n(n+1)=4n+6,n2﹣3n﹣6=0,此时没有整数解,所以不存在.故答案为:

46、4n+6;n(n+1)45.(1)结合图形,发现:后边每多一个三角形,则需要多2根火柴.则搭4个这样的三角形要用3+23=9根火柴棒;13根火柴棒可以搭(13﹣3)2+1=6个这样的三角形;(2)根据(1)中的规律,得搭n个这样的三角形要用3+2(n﹣1)=2n+1根火柴棒.故答案为9;6;2n+146.(1)第4个图形中的棋子个数是13;(2)第n个图形的棋子个数是3n+1;(3)当n=20时,3n+1=320+1=61∴第20个图形需棋子61个47.(1)第一级台阶中正方体石墩的块数为:=3;第一级台阶中正方体石墩的块数为:=9;第一级台

47、阶中正方体石墩的块数为:;…依此类推,可以发现:第几级台阶中正方体石墩的块数为:3与几的乘积乘以几加1,然后除以2.阶梯级数一级二级三级四级石墩块数391830(2)按照(1)中总结的规律可得:当垒到第n级阶梯时,共用正方体石墩块;当n=100时,∴当n=100时,共用正方体石墩15150块.答:当垒到第n级阶梯时,共用正方体石墩块;当n=100时,共用正方体石墩15150块48.由题意可知:第一次对折后,纸的厚度为20.05;可以得到折痕为1条;第二次对折后,纸的厚度为220.05=220.05;可以得到折痕为3=2

48、2﹣1条;第三次对折后,纸的厚度为2220.05=230.05;可以得到折痕为7=23﹣1条;…;第n次对折后,纸的厚度为2222…20.05=2n0.05.可以得到折痕为2n﹣1条.故:(1)对折3次后,厚度为0.4毫米;(2)对折n次后,厚度为2n0.05毫米;(3)对折n次后,可以得到2n﹣1条折痕49.由图形我们不难看出横行砖数量为n+3,竖行砖数量为n+2,总数量为n2+5n+6;若用瓷砖506块,可以求n2+5n+6=506;所以答案为:(1)n+3,n+2;(2)每一行有23块,每一列有22块50.等号左边是从1开始,连续奇数相加,等号

49、右边是奇数个数也就是n的平方.(1)①1+3+5+7=42;②1+3+5+7+9=52;③1+3+5+7+9+11=62.(2)1+3+5+…+(2n﹣1)=n2(n≥1的正整数)51.(1)依题意得:所剪次数n12345正方形个数Sn47101316(2)可知剪n次时,Sn=3n+1.(3)n=1时,边长=;n=2时,边长=;n=3时,边长=;…;剪n次时,边长=.52.(1)S=15(2)∵n=2时,S=3(2﹣1)=3;n=3时,S=3(3﹣1)=6;n=4时

50、,S=3(4﹣1)=9;…∴S=3(n﹣1)=3n﹣3.(3)当n=2008时,S=32008﹣3=6021.53.第1个正方形四条边上的格点共有4个第2个正方形四条边上的格点个数共有(4+41)个第3个正方形四条边上的格点个数共有(4+42)个…第10个正方形四条边上的格点个数共有(4+49)=40个第n个正方形四条边上的格点个数共有[4+4(n﹣1)]=4n个54.由图可知,每个图形为边长是n的正方形,因此四条边的花盆数为4n,再减去重复的四个角的花盆数,即S=4n﹣4;(1)将n=5代入S=4n﹣4,得S=16;(2)将n=10入S=4n﹣4

51、,得S=36;(3)S=4n﹣4;(4)将S=42代入S=4n﹣4得,4n﹣4=42解得n=11.5所以用42个花盆不能摆出类似的图案55.(1)在第1个图中,共有白色瓷砖1(1+1)=2块,(2)在第2个图中,共有白色瓷砖2(2+1)=6块,(3)在第3个图中,共有白色瓷砖3(3+1)=12块,(4)在第10个图中,共有白色瓷砖10(10+1)=110块,(5)在第n个图中,共有白色瓷砖n(n+1)块56.(1)由分析得:当n=6时,s=1+2+3+4+5+6=21;当n=100时,s=1+2+3+…+99+100=5050;(2)

52、用n表示S得:S=57.(1)图(5)比图(4)多出25﹣1=16个;(2)图(6)比图(5)多出26﹣1=32个;(3)图(8)比图(7)多出28﹣1=128个;(4)图(n+1)比图(n)多出2n个.58.(1)首先观察图形,得到前面三个图形的具体个数,不难发现:在5的基础上依次多3枚.即第n个图案需要5+3(n﹣1)=3n+2.那么当n=8时,则有26枚;故摆成第八个图案需要26枚棋子.(2)因为第①个图案有5枚棋子,第②个图案有(5+31)枚棋子,第③个图案有(5+32)枚棋子,依此规律可得第n个图案需5+3(n﹣1)=5+

53、3n﹣3=(3n+2)枚棋子.(3)32010+2=6032(枚)即第2010个图案需6032枚棋子59.(1)观察图形得:当黑砖n=1时,白砖有6块,当黑砖n=2时,白砖有10块,当黑砖n=3时,白砖有14块;(2)根据题意得:∵每个图形都比其前一个图形多4个白色地砖,∴可得规律为:第n个图形中有白色地砖6+4(n﹣1)=4n+2块.故答案为6,10,14,4n+260.第一个图案为3+2=5个窗花;第二个图案为23+2=8个窗花;第三个图案为33+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.(1)20(2)3n+2(3)存在,令3n+2=2012,则3n=2010n=670因此是第670个

THE END
1.数独数独 在每个小格子里填入1-9中的数字,使得每个数字在“九宫阵”的每行、每列、每个宫格中均只出现一次。(答案→)http://paper.people.com.cn/fcyym/pc/content/202412/06/content_30035674.html
2.556找规律填数:都是10以内的数,却不好找,家长看了也有点懵圈独自买处方药引质疑 董宇辉2小时卖300万斤脐橙 90后小伙徒步到西藏变“大爷” 距拜登政府停摆还剩1日 《小小的我》预售破4000万 大爷上山摘酸枣走失114天遗体被找到 暂无结婚计划 女子收到朋友退还礼金 微信紧急提醒:警惕木马病毒 普京的“年终总结”说了些啥 财神鱼死亡 男子起锅烧油含泪吃下 蜜雪冰城也坐不住https://m.163.com/v/video/VNITT6MQC.html
3.数列1,2,6,24的后一个数是什么数列1,2,6,24的后一个数是什么是由579范文问答网整理的关于问题描述的问题及答案。了解更多教育知识敬请关注579范文问答网,也欢迎广大网友随时提问及回答。http://m.579f.com/wenda_xycxqyzpqfok/
4.12345不能填6还能填什么右下方绿格填什么答案(脑筋急转弯)应该填写8,原因如下:不能填6,即不是等差为2的等差序列,可以用以下的规律:第一个(1)+第二个(3)+第一个(1)=第三个(5)1+3+1=5第一个(2)+第二个(4)+第一个(2)=第三个(8)2+4+2=8结论:8汽车档位为R,是字母,不是数字,题目要求是填几,必须为数字。 http://www.mnw.cn/keji/internet/1546839.html
5.找规律填空不能填612345百度试题 结果1 题目找规律填空不能填61 2 3 4 5 相关知识点: 试题来源: 解析 9 本题考查数与形的找规律。因为1+2=3,4+5=9,所以可以填9.正确答案是:9反馈 收藏 https://easylearn.baidu.com/edu-page/tiangong/questiondetail?id=1810211344835646603&fr=search
6.12345不填6脑筋急转弯12345不填6脑筋急转弯【1】 如果填数字 应该填写8,原因如下: 不能填6,即不是等差为2的等差序列,可以用以下的规律: 第一个(1)+第二个(3)+第一个(1)=第三个(5) 1+3+1=5 第一个(2穿礌扁啡壮独憋扫铂激)+第二个(4)+第一个(2)=第三个(8) https://m.wenshubang.com/miyu/423191.html
7.一年级找规律练习题14篇(全文)三、找规律填数。 1、1,7,1,7,(),(),(),… 2、1,3,5,7,(),(),(),… 3、0,5,10,15,20,(),(),(),… 4、60,59,58,57,56,(),(),(),… 5、20,18,16,(),(),(),… 6、1,11,21,31,(),(),(),… 7、8,12,16,(),(),28,(),… 8、6,6,6,7,7,7,(),(),https://www.99xueshu.com/w/filelq8eoqyi.html
8.小学奥数试题(锦集12篇)(2)1、3、6、()…… (3)15、20、25、()…… 3.题目:观察列的前面几项,找出规律,写出该数列的第100项来? 12345,23451,34512,45123,…… 1.找规律答案: (1)在这数列中,后一个比前一个数多2,根据这个规律,括号里里应该填10、12; (2)在这个数列里,后一个比前一个数多3,根据这个规律,括号里里https://www.hrrsj.com/jiaoxue/shitishijuan/840416.html
9.小学五年级奥数题《找规律填数练习题大全及答案》题库大全.doc小学五年级奥数题《找规律填数练习题大全及答案》题库大全.doc,试卷第 PAGE 41 页共 NUMPAGES 41 页 小学五年级奥数题《找规律填数练习题大全及答案》题库大全 姓名:___ 年级:___ 学号:___ 题型 选择题 填空题 解答题 判断题 计算题 附加题 https://m.book118.com/html/2022/0608/7144040132004130.shtm
10.《5的乘法口诀》教学设计优秀(通用10篇)6÷2=3表示:6里有3个2 师:看来同学们的旧知识掌握的不错,今天就用学过的知识来解决生活问题,相信你同样会很棒,进入第二环节,新知识我能行。 明年在北京将举办奥运会,大家早盼望这一天啦,为迎接奥运会,我们北京市民都行动起来建设新北京,北京是越变越美,学校也买来一些小装饰品打算装扮布置教室,来美化我们学https://www.ruiwen.com/jiaoxuesheji/6991638.html
11.(精华)5的乘法口诀教案6. 找规律,填算式。(题目略) 提问:你是怎样想的?怎样填的? 7. 送信。 出示四个信箱,上面分别写着10、15、20、25等数,学生按照信件上的信息(如:二五一十5乘4 =2 5 =5 + 5 =等),将信件投入对应的信箱。 [说明:找规律,填算式我们要让学生的思维上了一个新的台阶,尤其是最后一朵花的两片叶子,只https://www.jy135.com/jiaoan/2352621.html
12.小学数学解题思路技巧3.用“角谷猜想”计算方法填数。 ⑴6→□→□→□→□→□→□→□→ ⑵18→□→□→□→□→□→□→□→□→□→□→□→□→□→□→□→□→□→□→ □→1 4.在6的后面添上一个0,这个数是原来的几倍?比原来的数多多少? 5.1400末尾的两个0可以不读,也可以不写,对吗?为什么? https://www.360doc.cn/document/10693281_615197645.html