AI人工智能及大模型工程师从入门到精通学习路线图

AI人工智能及大模型工程师从入门到精通学习路线图第一阶段:练习套路学会编程

1、熟练掌握Python基本语法

PYTHON_CORE

认识软件、数据类型、操作符流程、控制容器、索引与切片、函数、变量作用域

2、熟练掌握OOP编程思想

OBJECT_ORIENTED技术

类和对象、跨类调用、MVC架构、封装、继承、多态软件架构、设计思想

3、掌握Python高级语法

PYTHON_ADVANCED技术

模块与包、导入、常用模块使用、正则表达式、异常处理生成器、函数式编程、lambda表达式、闭包函数python、装饰器:10、文件读写、with语句

就业岗位:自动化运维工程师、自动化测试工程师、Python脚本工程师

AI人工智能及大模型工程师从入门到精通学习路线图第二阶段:修炼内功、高级编程

1、掌握Linux系统文件管理

Linux技术

Linux文件管理、Linux系统管理、vim软件包管理

MySQL技术

数据库基础操作、数据增删改查、联合查询、子查询数据库、优化技巧、事务控制、pymysql、存储过程

3、熟练掌握Python网络编程、并发编程技术

BACKEND_DEVELOP_BASIC技术

网络基本概念、TCP协议、UDP协议、HTTP协议、多任务编程、进程、线程、互斥锁、死锁进程线程、网络并发模型、GIL问题、网络并发模型项目、HTTPserver

WEB技术

HTML、css、javascript、jouery

就业岗位:Python后端开发工程师

AI人工智能及大模型工程师从入门到精通学习路线图第三阶段:实战对打全栈开发

1、掌握Django框架配置和使用

DJANGO技术

Django安装、路由配置、视图处理、Http请求和响应、MVC与MTV设计模式、模板加载、传参、模板变量、静态文件、Django应用、分布式路由、模型、ORM模型增加、查询、修改、删除数据、Admin后台管理映射查询、cookie和session、Middleware、项目部署

2、掌握非关系型数据库Redis开发技术

REDIS技术

NoSQL、Redis安装与配置、基础命令、string、列表hash、set、zset数据持久化、Redis主从配置哨兵模式

3、掌握AJAX技术

AJAX技术

XHR请求响应、JSON、jQuery对Ajax的支持

4、综合各种前后端技术,开发电商网站,体验软件开发全流程

PROJECT

就业岗位:Python后端开发工程师、Python全栈工程师

AI人工智能及大模型工程师从入门到精通学习路线图第四阶段:升华境界人工智能

1、熟悉经典机器学习算法,为人工智能课程打下坚实基础

MACHINELEARNING

人工智能导论、科学计算库、Numpy、数据可视化Matplotlib、数据预处理、线性回归、梯度下降损失函数、多项式回归、决策树集成学习、逻辑回归支持向量机、朴素贝叶斯、模型评估与优化、聚类

就业岗位:机器学习工程师

2、熟悉深度学习基本理论与方法

DEEPLEARNINGBASIC

深度学习基本理论、卷积神经网络

就业岗位:深度学习工程师

3、熟悉推荐系统原理及应用

就浴业岗位:推荐算法工程师

4、熟悉计算机视觉理论与应用

COMPUTER_VISION

计算机图像理论、图像形态变换、色彩变换、色彩梯度图像技术与AI、工业质检案例、张量操作、手写体识别深层CNN网络搭建、PaddlePaddle、房价预测图像分类、目标检测、两阶段检测技术、RCNN一阶段检测技术、YOLO、图像分割、OCR

就业岗位:图像算法工程师

5、熟悉NLP原理、方法、经典模型及应用

NLP

分词NER、关键词提取、词性标注、垃圾邮件识别文本表示、语言模型、循环神经网络、LSTM、GRU文本情感分析、实体抽取、翻译、seq2seg注意力、Transformer、BERT与GPT

就业岗位:自然语言处理工程师

注:学员信息+企业信息均来自达内教育内部CRM系统真实统计,非宣传使用。

课程适用人群:成人

了解达内

注:学员信息+企业信息均来自达内教育内部CRM系统真实统计

THE END
1.神经网络学习历程与总结神经网络学习路线以上构成了神经网络的基本框架。 随后对卷积神经网络进行系统的学习。卷积神经网络不同于全连接的深度神经网络,而是采用卷积核的形式构造网络,要求的权重就是卷积核中的参数。 简述卷积神经网络的发展历程: LeNet可以说是CNN的开端: C5层输出1*1*120特征图,可以把它理解为一个120维的向量,将这个向量与F6的84个神https://blog.csdn.net/qq_30815237/article/details/93381521
2.神经网络求解路径规划神经网络路径规划神经网络求解路径规划 神经网络 路径规划 对机器学习深度学习已经神往已久,奈何数学太差,一直搞不懂原理,虽然研一学了大量相关课程,甚至都做了相关的实验和比赛,但其实自己知道对其的了解的掌握几近于无,这不单单是直接拿来现成的网络去应用上,也不是去改改参数,解决了某个问题就能够说自己掌握的。隔了一段时间https://blog.51cto.com/u_15444/9127815
3.学习神经网络的路线图信息科学小木虫学习神经网络的路线图 第一步:看看入门书籍,对神经网络有个初步认识; 第二步:掌握如下算法: 1.感知机学习,这个较简单易懂,就不多说了. 2.最小均方误差,这个原理是下面提到的神经网络学习算法的理论核心,入门者要先看《高等数学》(高等教育出版社,同济大学版)第8章的第十节:“最小二乘法”。https://muchong.com/html/200604/229328.html
4.详细的人工智能学习路线和资料推荐神经网络基础:学习神经网络的基本原理,如前向传播、反向传播等。 深度学习框架:学习TensorFlow、PyTorch等深度学习框架,通过实践项目加深对深度学习算法的理解。 3. 计算机视觉与自然语言处理:学习计算机视觉(如图像分类、目标检测等)和自然语言处理(如文本分类、情感分 https://developer.aliyun.com/article/1562181
5.卷积神经网络之父的强人工智能路线图:自监督,推理,规划在此次演讲中,LeCun对自己近年来倡导的自监督学习进行了梳理,从认知科学出发对人工智能领域未来10年的研究目标展开了更为宏大的畅想,提出了基于自监督学习、世界模型、推理、规划的强人工智能实现路线图。 Yann LeCun:FAIR首席AI科学家,Facebook人工智能实验室负责人,曾获得“神经网络先驱奖”。同时是美国国家科学学院https://aidc.shisu.edu.cn/9c/75/c13626a171125/page.htm
6.自然语言学习路线图01 完整路线 第一部分:机器学习基础篇 第一章:自然语言处理概述 1. 自然语言处理的现状与前景 2. 自然语言处理应用 3. 自然语言处理经典任务 第二章:数据结构与算法https://www.jianshu.com/p/02b95ff6eb5c
7.深度学习学习路线规划深度学习是当今最令人兴奋的技术之一,其应用广泛,从图像识别到自然语言处理都有它的身影。一般来说,学习深度学习需要一定的时间和经验,但是若想要学习深度学习,下面有几条可以跟着做的学习路线:学习基本的数学知识:深度学习是建立在数学基础上的,因此,学习深度学习https://www.nowcoder.com/discuss/455400348732211200
8.科学网—移动传感器(移动机器人)路径规划方法总结(一)其主要方法有:可视图法,自由空间法,最优控制法,栅格法,拓扑法,神经网络法等。 1).可视图法 可视图法视移动机器人为一点,将机器人、目标点和多边形障碍物的各顶点进行组合连接,并保证这些直线均不与障碍物相交,这就形成了一张图,称为可视图。由于任意两直线的顶点都是可见的,从起点沿着这些直线到达目标点的所https://wap.sciencenet.cn/blog-281551-462159.html
9.2024学习生成式AI的最佳路线图知道如何在表格数据集上构建机器学习模型。 3.2 深度学习 对多层感知机、循环神经网络(RNN)、长短时记忆模型(LSTM)、门控循环单元(GRU)和卷积神经网络(CNN)等深度学习架构有深入理解。 至少掌握一种深度学习框架,如Keras、Tensorflow、Pytorch或FastAI的实际操作经验。 https://www.elecfans.com/d/4320085.html
10.ECMWF发布未来十年战略规划,包括机器学习路线图文末有战略规划及机器学习路线图的文档下载链接 2021年1月26日,ECMWF发布了2021-2030战略,用于指导未来十年的发展规划。此战略主要强调了为ECMWF会员国和合作方及用户提供更加准确的预测。 此战略将在ECMWF会员国理事会最终确定通过的情况下每五年更新一次。 https://cloud.tencent.com/developer/article/1787277
11.智能水下机器人路径规划方法综述算法神经网络寻优视图⑶基于神经网络的规划方法,样本数据量大且不易获取,但训练成功后规划时间短,泛化能力强,近年提出的生物启发神经网络无学习且自适应,适用于解决动态规划问题。强化学习是机器学习的重要分支,已经被广泛应用于解决局部避障规划问题,在结合深度学习网络之后,将大量的状态输入量压缩,动作选择机制应从有限组动作空间向连续动作https://www.163.com/dy/article/FGJ9EDGD0511DV4H.html