开学起点测丨课时学练测丨期中期末试题等
实验一:天平测量
1.把天平放在水平桌面上,取下两端的橡皮垫圈。
2.游码移到标尺较左端零刻度处(游码归零,游码的较左端与零刻度线对齐)。
3.调节两端的平衡螺母(若左盘较高,平衡螺母向左拧;右盘同理),直至指针指在刻度盘中央,天平水平平衡。
4.左物右码,直至天平重新水平平衡。(加减砝码或移动游码)
5.读数时,被测物体质量=砝码质量+游码示数(m物=m砝+m游)
实验二:弹簧测力计测力
测量前:
1.完成弹簧测力计的调零。(沿测量方向水平调零)
2.记录该弹簧测力计的测量范围是0~5N,较小分度值是0.2N。
测量时:拉力方向沿着弹簧伸长方向。
实验三:验证阿基米德原理
1.把金属块挂在弹簧测力计下端,记下测力计的示数F1。
2.在量筒中倒入适量的水,记下液面示数V1。
3.把金属块浸没在水中,记下测力计的示数F2和此时液面的示数V2。
4.根据测力计的两次示数差出物体所受的浮力(F浮=F1-F2)。
5.出物体排开液体的体积(V2-V1),再通过G水=ρ(V2-V1)g出物体排开液体的重力。
6.比较浸在液体中的物体受到浮力大小与物体排开液体重力之间的关系。(物体所受浮力等于物体排开液体所受重力)
液体受到的浮力大小等于物体排开液体所受重力的大小
实验四:测定物质的密度
(1)测定固体的密度
1.用天平测量出石块的质量为48.0g。
2.在量筒中倒入适量的水,测得水的体积为20ml。
3.将石块浸没在量筒内的水中,测得石块的体积为cm3。
根据公式出石块的密度为2400kg/m3。
多次实验目的:多次测量取平均值,减小误差
(2)测定液体的密度
1.测出容器与液体的总质量(m总)。
2.将一部分液体倒入量筒中,读出体积V。
3.测容器质量(m容)与剩余液体质量(m剩=m总-m容)。
4.算出密度:ρ
实验五:物质质量&体积与哪些因素有关
1.用天平测出不同铜块和铁块的质量,用量筒测出不同铜块和铁块的体积。
2.要记录的物理量有质量,体积。
3.设计表格:
1.同种物质,质量与体积成正比。
2.同种物质,质量和体积的比值相同。
3.不同物质,质量和体积的比值不同。
4.体积相同的不同物质,质量不同。
实验六:探究二力平衡的条件
探究当物体处于静止时,两个力的关系;探究当物体处于匀速直线运动状态时,两个力的关系
1.如图a所示,作用在同一物体上的两个力,在大小相等、方向相反的情况下,它们还必须在同一直线,这二力才能平衡。
2.如图b、c所示,两个力在大小相等、方向相反且在同一直线上的情况下,它们还必须在同一物体上,这二力才能平衡。
二力平衡的条件:1.大小相等(等大)2.方向相反(反向)3.同一直线(共线)4.同一物体(同体)
实验七:探究液体内部压强与哪些因素有关
1.将金属盒放入水中一定深度,观察U形管液面高度差变大,这说明同种液体,深度越深,液体内部压强越大。
2.保持金属盒在水中的深度,改变金属盒的方向,观察U形管液面的高度差相同,这现象说明:同种液体,深度相同,液体内部向各个方向的压强都相等。
3.保持金属盒的深度不变,把水换成盐水,观察U形管液面高度差变化,可以探究液体内部的压强与液体密度(液体种类)的关系。
同一深度,液体密度越大,液体内部压强越大。
在调节金属盒的朝向和深度时,眼睛要注意观察U形管压强计两边液面的高度差的变化情况。
在研究液体内部压强与液体密度的关系时,要保持金属盒在不同液体中的深度相同。
实验八:探究杠杆平衡的条件
1.把杠杆的中点支在铁架台上,调节杠杆两端的平衡螺母,使杠杆在水平位置平衡,这样做的目的是方便直接在杠杆上读出力臂值。(研究时必须让杠杆在水平位置平衡后,才能记录实验数据)
2.将钩码分别挂在杠杆的两侧,改变钩码的位置或个数使杠杆在水平位置保持平衡。
3.所需记录的数据是动力、动力臂、阻力、阻力臂。
4.把钩码挂在杠杆上,在支点的同侧用测力计竖直向上拉杠杆,重复实验记录数据,需多次改变杠杆所受作用力大小,方向和作用点。(多次实验,得出普遍物理规律)
杠杆的平衡条件是:当杠杆平衡时,动力×动力臂=阻力×阻力臂,若动力和阻力在支点的异侧,则这两个力的方向相同;若动力和阻力在支点的同侧,则这两个力的方向相反。
【注意】实验中先确定杠杆受的作用力哪个是动力哪个是阻力。实验必须尊重实验数据,不得随意篡改实验数据。
、
电学部分常考实验
实验九:电流、电压的测量
(1)用电流表测电流
1.将电源、电键、小灯泡、电流表串联起来,连接过程中电键处于断开状态。
2.电流从电流表的正接线柱流入,负接线柱流出。在未知电流大小时,电流表选择0~3A量程。
3.闭合电键,观察电流表的示数,确认是否需要改变电流表的量程,然后记下电流的示数。
(2)用电压表测电压
1.将电源、电键、小灯泡连接在电路中,连接过程中电键处于断开状态。
2.将电压表与小灯泡并联连接,在连接过程中,电压表的正接线柱靠近电源的正极,负接线柱靠近电源的负极,在未知电压大小时,电压表选择0~15V量程。
3.闭合电键,观察电压表的示数,确认是否需要改变电压表的量程,然后记下电压的示数。
实验十:用滑动变阻器改变电路中的电流
实验十一:用电流表、电压表测电阻
【实验原理】R=U/I
1.如图所示连接电路,电键处于断开状态,滑动变阻器连入电路中的电阻处于较大值。
2.移动滑片到三个不同位置,记下相应的电流表示数和电压表示数。
3.根据公式三次的电阻,较后通过求平均值得到待测电阻的阻值。
滑动变阻器在实验中作用:多次测量,求平均值,减小误差。
实验十二:测定小灯泡电功率
【实验原理】P=UI
1.记下小灯泡的额定电压,额定电流。
2.如图所示连接电路,电键处于断开状态,滑动变阻器连入电路中的电阻处于较大值,电源电压要大于小灯泡的额定电压。
3.移动滑片,使得电压表的示数等于小灯泡的额定电压,观察小灯泡的发光情况,记下此时的电流表示数,根据公式出小灯泡的额定功率。
4.改变滑片的位置,使得电压表的示数分别大于或小于小灯泡的额定电压,记下相应的电流值并出相应的电功率,并观察记录小灯的发光情况。
滑动变阻器在电路中的作用是:分担一部分电压,从而改变小灯两端的电压和通过小灯的电流。
实验十三:探究导体中电流与电压的关系
1.如图所示连接电路,将导体甲连入M、N两点,电键处于断开状态。
2.闭合电键,记下相应的电流表示数和电压表示数。
3.改变电池的节数,再记下两组不同电压下对应的电流值。
4.用乙导体换甲导体,重复上述实验。
5.本实验进行多次实验的目的是多次试验,得出普遍的物理规律。
1.同一导体,电流与电压成正比。
2.同一导体,电压和电流的比值为定值。
3.不同导体,电压和电流的比值不同。
滑动变阻器在实验“探究电流与电阻的关系”中作用:控制电阻两端电压不变。
光学部分常考实验
实验十四:验证凸透镜成像规律
1.记录凸透镜的焦距。
2.在光具座上从左往右依次放置蜡烛,凸透镜,光屏,并调节凸透镜和光屏的高度,使凸透镜和光屏的中心跟烛焰的中心大致在同一高度。(使像成在光屏中央)
3.固定凸透镜的位置,使烛焰位于凸透镜的2f以外(u>2f),移动光屏找像,在移动的过程中,眼睛要注意观察光屏上的成像情况,直到光屏上出现一个较清晰的像为止。此时像的情况是一个倒立、缩小的实像。测量并记录此时的物距和像距,再把像距、物距与凸透镜的f、2f相比较(f<v<2f)。
4.使烛焰位于凸透镜f、2f之间(f<u<2f),移动光屏,直到光屏上出现一个倒立、放大的实像(像距v>2f)。
5.使烛焰位于凸透镜f以内(u<f)移动光屏,发现光屏上得不到像,撤去光屏,眼睛在光屏侧可以看到一个正立、放大的虚像。
1.表格.
2.凸透镜成实像时:
物距越大,像距越小,像越小,u﹥v成缩小的像
物距越小,像距越大,像越大,u﹤v成放大的像
实验十五:探究平面镜成像的特点
玻璃板、白纸、两支等大的蜡烛、火柴以及刻度尺
1.在水平桌面上铺一张白纸,纸上竖直放一块玻璃作为平面镜。
2.在玻璃板前放一支点燃的蜡烛A,在玻璃板后放一支等大、未点燃的蜡烛B。
3.移动玻璃后的蜡烛B,直到从玻璃板前各个位置看去,玻璃板后的蜡烛B看上去好像点燃一样,这个现象表明了像和物体的大小相等。在纸上记下这个位置,这样做的目的是确定虚像的位置。
4.测量出两支蜡烛到玻璃板的距离,发现:距离相等。
5.观察蜡烛A和蜡烛B的连线,发现:连线垂直于玻璃板。
6.若要判定所成的像的虚实,应该在像的位置放一块光屏,通过玻璃板观察上面是否成像来进行判断。