【www.sudunlaoyingcha.com--人大政协】
——使大众数学成为现实
随着时代的发展,各国数学教育工作者普遍面临着一个极为棘手的难题:一方面,以计算机为基础的信息社会越来越依赖于数学,每个人要掌握更多的数学,才能比较好地适应日常生活;另一方面,现代数学越来越只能为少数人所掌握。我们认为,正是这一难题构成了现代数学教育发展的主要矛盾。
与此同时,我国的现行数学教育体制还出现了一个令人尴尬的现象:现行中小学数学内容,不少方面学生掌握不了,而且学了没用,但考试指挥棒迫使他们非学不可;而很多既有实用功能,又有智力价值的内容,却又学不到。这一现象集中反映了我国现行数学教育体制的弊端,说明当前我国的数学教育状况严重滞后于社会发展,必须寻求新的教育改革思路。几年来的研究表明,解决上述矛盾的根本出路在于,用大众数学的思想改造传统的数学教育理论与实践体系。
1.数学具有了作为科学的方法论属性。以往,人们对数学的描绘就是利用纸、笔进行运算与证明,因而很难体会到实验、合情推理、模型模拟、矫正与调控、逐步优化与近似逼近等一系列的科学活动过程。计算机的出现,使这一切出现了根本性的改变。实验、尝试错误、模型模拟已经成为当今数学家或工程技术人员研究数学、应用数学的最为常见的策略,而公理化体系仅仅是整理数学的一种手段。数学具有了作为科学的方法论属性。因而,随着计算器、计算机引入课堂,中小学生能更多地通过数学学习活动体会科学研究的基本方法:观察、尝试、合情推理、建立猜想与实验验证。这种研究方法的熏陶,将使人终生受益。
2.数学是关于客观世界的模式的科学(从这个意义上讲,数学也是一门技术)。这种观点正在被越来越多的人所传播。无论是数、关系、形状、推理,还是概率、数据分析和抽样,它们都是人类发展进程中对客观世界的某些侧面的数学把握的反映。基于这种观点,中小学阶段,应该让学生通过“数与计算,空间与图形,统计与概率,量与计量,方程与关系,运筹与优化”等基本领域了解数学研究现实世界的全貌。让学生体会到数学是从普通的人类实践活动中发展起来的。
3.数学是关于客观世界的数学化过程。数学家反省自身的研究生涯,发现一个基本数学过程的循环,它反复出现,形成了最基本的模式,即抽象、符号和应用。而这一模式与人类的基本认识规律是一致的。H.Freudenthal称之为数学化。实质上,学生数学化的过程,就是数学现实进一步提高、抽象、发展的过程。然而,现行中小学数学课程绝大多数内容局限于“数、式及其运算”和“平面几何与证明”,学生们见不到数学的全貌,更无从体会数学的全过程。新的课程改革试图在此有所突破。
本世纪中叶以来,随着现代认知心理学的产生与发展,国际上一些著名的心理学、教育学理论,如皮亚杰的发生认识论,布鲁纳的认知结构与发现法,加涅的层次学习理论,奥苏贝尔的有意义学习理论,加里培林的活动理论,以及赞可夫的教学与发展乃至席卷原苏联的合作教育学等,所有这一切理论角度各异,但综合起来,我们认为以下几点值得强调。
1.学生不是一张白纸,即使是一年级的儿童,他们也有着丰富的生活体验和知识积累。这其中就包含着大量的数学活动经验,特别是运用数学解决问题的策略。
2.每个学生都有自己的生活背景、家庭环境,这种特定的社会文化氛围,导致不同的学生有不同的思维方式和解决问题的策略。
3.学生的学习不是一个被动吸取知识、记忆、反复练习、强化储存的过程。一个有意义的学习过程是学生以一种积极的心态,调动原有的知识和经验尝试解决新问题,同化新知识,并构建他们自己的意义。
4.所有的新知识只有通过学生自身的“再创造”活动,使其纳入自己的认知结构中,才可能成为有效的知识。对于每一个学习主体,没有活动、没有做就形不成学习。
6.让学生体验做数学的成功乐趣,树立学好数学的自信心。
新中国建立40多年来,我国中小学数学教育事业有了长足发展。然而,我们不能因此而轻视危机所在。
1.数学课程目标偏离社会发展的需求轨道。这主要表现在,长期以来我国中小学数学课程一直在前苏联“学科中心主义”课程模式的笼罩下,固守着他们早已改变了的传统的数学知识体系,学生在校学习的仅仅是16、17世纪以前的数学。随机事件、抽样、数据统计与处理、规划与运筹、决策分析、优化思想以及数学建模等一系列现代社会所必需的公民数学修养内容在数学课堂上几乎无处寻觅。同时,迄今为止我国小学、初中数学教学大纲中,仍然以计算(运算)能力、逻辑推理能力及空间观念为核心。事实上,信息社会的到来,对公民计算能力的要求已大大降低;逻辑推理能力则因局限于以平面几何为载体的三段论训练模式为重点,而陷于困境;“空间观念”一词虽然提得很好,但小学、初中的数学课本中,除了几个简单几何体的体积、表面积计算外,几乎没有任何别的三维空间的内容。而现代社会所必需的与数学的现代发展趋势一致的数学建模能力以及估算意识、应用意识、创造意识都被拒之于教科书之外。
2.数学课程内容存在着严重的缺陷。这主要表现在:知识面狭窄;部分知识单元的教学要求偏高,耗时过多;不少内容陈旧、过时;忽视数学的实际应用;课程缺乏弹性。
80年代末90年代初,世界发达国家纷纷开始对本世纪以来各自数学教育发展历程作全面的考察,出台了一系列数学教育发展纲要和数学课程改革蓝图。为此,我们对美国、英国、法国、德国、瑞典、日本和前苏联七国的有关资料进行了较为详尽的分析。
1.关于中小学数学课程目标。(1)重视问题解决是各国课程标准的一个显著特点。(2)增加具有广泛应用性的数学内容,从学生的现实中发展数学,增强实践环节是各国课程标准的共同特点。(3)数学提供了一种有力的、简洁的和准确的交流信息的手段,因此,强调数学交流是各国课程发展的新趋势。(4)强调数学对发展人的一般能力的价值,淡化纯数学意义上的能力结构。(5)大多数国家倾向于,通过解决实际问题使学生在掌握所要求的数学内容的同时,形成那些对人的素质有促进作用的基本的思想方法,如实验、猜测、模型化、合情推理、系统分析等。(6)培养学生的自信心是数学教育的重要目标之一。
2.关于数学教学内容。(1)拓宽知识面,使学生尽早体会数学的全貌。(2)注重现代数学思想方法的渗透。(3)重视在应用数学解决问题的过程中,使学生学习数学、理解数学。
(4)加强几何直观,特别是三维空间图形的认识,降低传统欧氏几何的地位,特别是欧氏几何对演绎推理的作用,用现代数学思想处理几何问题。(5)较早引入计算器、计算机,发挥现代技术手段在探索数学、解决问题中的作用。我们认为,社会的进步、数学的发展、国际数学教育的发展态势,以及学习心理学的研究成果和义务教育的基本精神,所有这一切都在孕育着一个崭新的数学教育新时代——大众数学时代。
大众数学意义下的数学教育体系所追求的教育目标,就是让每个人都能够掌握有用的数学,其基本含义包括以下三个方面。
在大众数学意义下,实现人人掌握数学的首要策略正是课程改革策略——让学生从现实生活中发展数学,删除那些与社会需要相脱节、与数学发展相背离、与实现有效的智力活动相冲突的,而恰恰是导致大批数学差生的内容,如枯燥的四则混合运算、繁难的算术应用题、复杂的多项式恒等变形以及纯公理体系的几何;同时,在突出思想方法,紧密联系生活的原则下增加估算、统计、抽样、数据分析、线性规划、图论、运筹以及空间与图形等知识,使学生在全面认识数学的同时,增强学好数学的自信心。
大众数学要求数学课程面向每一个人,因此,新体系下的数学课程将在使所有学生获得共同的数学教育的同时,让更多的学生有机会接触、了解乃至钻研自己所感兴趣的数学问题,最大限度地满足每一个学生的数学需要。从这个意义上讲,大众数学与精英数学并不对立。恰恰相反,大众数学意义下的数学课程提供了更为广泛的现代数学分支的原始生长点,它为对数学有特殊才能和爱好的学生提供了更多的发展机会。
1.以反映未来社会对公民所必须的数学思想方法为主线选择和安排教学内容;
2.以与学生年龄特征相适应的大众化、生活化的方式呈现数学内容;
3.使学生在活动中,在现实生活中学习数学,发展数学。
在大众数学意义下,义务教育阶段应以下面所论述的数学思想方法为主线,来逐一审视我国现行中小学数学内容,并以此为标准来构成数学新课程的框架。
人类生活在三维空间,理应通过拼补、折叠、描绘、测量、计算、比较与分析,认识和理解现实几何世界;直观几何、变换几何、推理几何、向量几何以及解析几何、拓扑和分形几何是人类对几何世界的不同角度的数学把握;代数化是研究几何问题的必然趋势;而图形直观以及图形分析是人们理解奇妙的自然现象和社会的绝妙工具,图形给人类带来无穷无尽的直觉源泉,图形设计是人类社会赖以生存和发展的根基,没有图形人类就无所谓美。
在我国,随着市场经济体制的逐步建立,投资、贷款、股票、证券、市场预测、风险评估等日常经济行为的实现,其科学性如何有赖于社会成员对不确定性、随机性及可能性等概率统计思想的理解和运用水平。应当对中小学生进行概率统计思想的熏陶,使他们了解条件是可变的,结论非唯一的,结论不是绝对可靠的,事物的多样性是普遍的,而必然性、绝对性则是相对的、有条件的。只有这样,才能有助于他们理解社会、适应生活。同时,通过概率、统计的学习,还应该使他们形成尊重事实、用数据说话的习惯,了解必然性寓于偶然性之中的道理,体会或然性的推理在研究复杂事物中的作用。
在我们的周围,优化问题几乎随处可见。例如,如何使有限的材料得到最充分的应用;如何在商品销售中,调整商品价格,薄利多销,获得最多利润;如何在体能训练中调整训练强度和练习节奏,达到事半功倍的效果,把这些问题抽象成为一个理论问题,即是如何使系统在给定的条件下,达到最理想的效果。
函数与方程思想在数学内部与外部均显得十分重要,它贯穿于数学理论和实际问题解决的每一场合。函数和方程是有效地表示、处理、交流和传递信息的强有力工具,是探讨事物发展规律、预测事物发展方向的重要手段。
通常人们认为,建立和处理数学模型的过程,就是将数学理论知识应用于实际问题的过程。实际上,建立模型也是从实际情景中发展数学、“再创造”数学的绝好机会。在建立模型、形成新的数学知识的过程中,学生更加体会到数学与大自然的天然联系。为此,大众数学意义下的数学课程将积极探索“问题情景——建立模型——解释与应用”的课程发展模型。前文已经论及,函数和方程是反映客观事物数量变化规律的一种模型。实际上,数、式、方程、函数、图形、统计以及规划和组合分析都是数学反映客观世界的模型。
所谓推理意识是指推理与讲理的自觉意识,即遇到问题时自觉推测,并做到落笔有据,言之有理。推理意识包括归纳推理、类比推理和演绎推理的自觉意识。在大众数学意义下,推理训练不仅仅存在于欧氏几何,其更为广泛、更为深刻的内涵普遍地存在于数学的各个分支。如果我们在“问题情景——建立模型——解释和应用”的框架下,引导学生在活动中、在现实生活中发展数学,那么,数学交流、合情推理、发展模式、选择合理的方法、调整矫正模式、分析和解释结论等一系列过程中都始终包含着推理因素。
计算器和计算机进入中小学数学课程,其必要性与可能性已不用我们再做讨论。国际上多项研究报告表明,中小学生使用计算机利大于弊。培养中小学生的计算机意识,主要包括以几个方面:①减少学生对计算机的恐惧感,成人社会对现代科学技术的恐惧、回避态度不应在孩子们身上继续扩散;②使学生养成运用计算机等更为先进的计算工具,处理复杂问题的习惯;③通过对算筹、算盘、算表、手摇计算机和电子计算机的认识,理解计算工具的变化对社会发展水平的影响程度;④借助计算机可以解决更多的问题,使学生更好地体会数学与现实社会的密切联系;⑤通过使用计算机求解问题,使学生体会到,先进计算工具的使用,将更有助于激发自身的探索意识和分析问题、解决问题的能力。我们认为,除明确提出以上述数学思想方法为主线,构成义务教育阶段数学课程的基本框架外,还应有意识地渗透集合思想和极限思想,并全方位的培养学生应用意识。