序论:在您撰写生物统计论文时,参考他人的优秀作品可以开阔视野,小编为您整理的1篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
生物统计学是运用数理统计学的原理和方法,收集、整理、分析数据,解释生物现象,寻求其内在规律的一门学科。与一般数理统计学相比,它不仅要通过事物外在的数量表现去揭示事物可能存在的规律性,而且要根据专业知识去探讨、解释为什么会存在这种规律性。[1]生物统计学的特点就是研究对象是抽象的随机变量,而且要和农业实际紧密联系起来。“生物统计”主要包括田间试验中常用的、基本的试验设计方法与统计分析方法两部分,是生物科学、植物生产类专业的一门专业基础课。[2]如何提高“生物统计”课堂教学的有效性,在有限的教学时数内高质量、高效率地完成“生物统计”课程的教学,为学生奠定一个丰厚、扎实、牢固的试验设计和统计分析的基础,是摆在每一位从事“生物统计”课程教学的教师面前的严峻现实。为了提高“生物统计”课堂教学的有效性,提高教学质量,笔者所在教研室一直以来对教学方法、教学手段等进行反复探索,不断进行新的尝试,并有一些体会。以下浅谈教学过程中的一些心得。
一、营造平等的师生关系,构建和谐的课堂氛围
二、针对不同专业调整教学内容和教学实例
三、加强实践教学,注重学生能力培养
2.理论联系实际,提高学生解决实际问题的能力生物统计学是生物领域中非常重要的一种分析工具,对将来从事农业和生物科技工作的学生来说是一门有重要实用价值的课程,与数理统计学不同的是,这门课程重在应用。因此在教学过程中一定要突出和强调“用”这个特点,学生学习这门课程的最终目的是要会应用。老师在上课过程中要注重学生统计思维能力的培养。为了提高学生综合分析问题与实际动手能力,教研室积极开展第二课堂,让学生根据自己申报的大学生研究训练计划(SRP)项目和本科毕业论文进行讨论和交流,每个学生给大家介绍自己的试验设计和实验方案,并说明自己的项目或者毕业论文用是什么统计方法来分析。此外还安排上机实习,并且是让学生带着自己的试验数据独立处理,让学生体会“学有所用”。在处理数据的过程中,进一步培养学生的统计分析与逻辑思维能力。在实践中培养创新能力。这样使学生能够真正利用统计学方法解决实际问题。
四、针对课程特点采用多种教学方法相结合
五、小结
要想提高“生物统计”课堂教学质量,教师要把教学当成一门艺术来对待。教师感情的投入、学生学习兴趣和动机的培养、教学内容的处理、教学方法的选择、教学结构的编排、教学节奏的控制都在构建着现代教学趋势,教师只有全身心投入并不断总结方法,才能探索出有生命力的教学方法。
统计是认识客观现象的方法和手段,也是一种意识和观念,统计能力是信息时代对国民素质的基本要求。生物统计课程是一门培养统计思维的专业基础课程,理论性和实践性都很强,该课程重在用统计学的原理和方法解决生命科学研究中的实际问题,以概率论为基础,揭示生命现象的规律性;生物统计涉及面广,具有大量的数学概念、数学符号和计算公式,同时具备内容丰富、理论抽象、实践性强的特点,对学生综合运用基础知识及理论联系实际的能力要求较高,也是培养学生学习兴趣、科研精神和创新能力不可缺少的基础。由于统计课程性质的独特性,学生学习、教师讲授过程中存在与其他专业课程不同的特点,如果采用传统的教学方式,死记硬背一些公式定理,将会造成学生学习兴趣的丧失。1999年,国务院在关于深化教育改革全面推进素质教育的决定中指出:“对大学生进行素质教育的核心是创新教育”,河北农业大学动物科技学院生物统计课程组逐步改变教学方法,调整教学重点,把培养高素质的创新型综合人才作为教学的最终目标,收到了较好效果。
1用启发式教学法培养学生的学习兴趣
2采用探究式教学法培养学生逻辑思维能力
3采用比较式教学法培养学生分析问题的能力
4采用案例式教学法培养学生解决问题的能力
5通过统计分析培养严谨务实的科学研究精神
创新是民族进步的灵魂,是国家走向发达的不竭动力。一个国家、一个民族要发展,造福人类,必须注重自主创新,在统计教学中灵活运用启发式、探究式、案例式等教学方法,培养学生的专业兴趣、逻辑推理能力、分析和解决问题的能力、严谨务实的研究精神,对培养21世纪创新型综合人才具有非常重要的作用。
1生物统计的教学原则思考
概率统计学近年来发展迅速,在各个领域的应用向深度和广度两个方向扩展。同时商业化统计软件如SAS、S+及SPSS广泛应用,给数理统计的教学提出了挑战和新的要求,对此应该在教学中有所反应和体现。
1.1数理统计基本概念和基础理论的学习
对统计思维的培养很大程度上依赖于对基本概念与原理的准确把握。虽然不同统计模型的具体方法不同,但均由样本容量确定、随机抽样、参数估计、假设检验、统计推断、统计预测、模型验证等一系列环节构成。由样本、统计量、抽样分布、置信区间、弃真概率α、取伪概率β、检验效力(powerofatest)、P值等概念所表达的统计思想在不同统计模型中是完全一致的,因而在条件允许时,应该用统计模拟方法进行直观化教学,以加强对概念和基本原理的把握。
1.2统计模拟方法辅助教学
随机模拟试验可以加强学生对统计基本概念和理论的理解,及分析问题、解决问题的能力[1]。例如,对显著性水平为α置信区间的正确理解应该为:(1)由两个随机变量(上下限)所确定的一个随机区间;(2)在同等条件下无限多次反复抽取相同容量的样本时,随机区间包含未知总体参数的概率为1-α。对此抽象概念的直观教学,可以用统计软件如S+简单完成。对于其他概念,如抽样分布、假设检验中弃真和取伪错误概率、检验效力、线性回归模型参数估计量的抽样分布、预测误差分解、离差平方和分解等,均可利用统计模拟进行直观化教学。另外,统计模拟还可以取代部分定理和结论的证明,通过模拟试验进行经验性验证。
1.3理论和实验技能的同步提高
1.4精讲式和与概论式教学的相互结合
数理统计的内容极其广泛,不加选择的教学使学生难以抓住重点。应在数学基础允许的前提下,重点地讲解核心内容。例如单一正态总体统计分析虽然简单,但涉及了所有核心统计概念,应作为重点内容讲解。根据统计模型间的区别与联系,应注意将核心结论自然地扩展到相近或相似的统计方法中去。如简单线性回归向多元线性回归、协方差分析、方差分析乃至非线性回归的自然扩展。与精讲相对应的,可以进行一定学时的概论式教学,对专业领域内的常用分析方法进行一般性介绍,并以典型案例分析的形式拓宽学生的眼界,做到点面结合。
1.5典型案例分析
典型案例分析指对科技论文中常用统计方法的剖析和讲解。典型案例分析可以使:(1)学生体会到统计方法在实际科研和生产中的应用,培育学习兴趣;(2)实际案例基本上包含了统计分析的各个方面和环节,可以使学生直观地体会统计分析的内涵。对典型案例的进行详略得当、点面结合的分析,可以使学生建立统计分析的系统观念;(3)通过案例分析使学生能够学习科学研究的内涵与方法,并融会贯通地掌握统计分析在本专业的应用。概论性地介绍一些统计方法在专业领域的应用,不必苛求对统计方法和理论的深刻理解,仅要求学生体会具体案例中随机抽样、参数估计、假设检验、统计推断、统计预测、验证模型等环节所体现的统计思维方法,及对具体案例和所用统计方法的感性认识。同时,应该抽出一定的学时(如2学时)对高级统计分析方法进行概论式介绍。
1.6自学能力和学习兴趣的培养及考核方式
授人以鱼,不如授人以渔。课堂教学永远无法包含将来所需要的全部知识,因而培养学生的自学能力和激励学习兴趣应成为教学指南。典型案例分析、模拟研究项目、统计模拟验证、课堂讨论、概论式介绍应用现状和前景都是激发学习兴趣的有效手段。课后作业是督促学习、培养自学能力和检验学习效果的主要手段。精心设计的作业,不仅可以帮助学生及时地理解和消化课堂所学知识,而且是培养自学能力的主要途径。可以将简单的理论证明和一部分教学内容以作业形式让学生通过自学完成,逐渐培养自学能力。平时作业成绩、分段考核成绩、实验成绩、课程设计应在总评成绩中占50%左右的比例,这样不仅可以保证以上教学环节的实施并达到预期效果,还可以减轻期末考试时的学习压力。考试可以采取分段多次考核的方法,以2~3次为宜。这样教师和学生都能及时发现教与学中的问题并及时加以调整,减轻终考压力,以免一次考试决定成绩和突击学习应考的现象。
2教学内容和教学结构的思考
2.1单一正态总体的统计模型
2.2线性回归线型
2.3协方差和方差分析
通过对多元线性回归模型引入离散型的回归变量而介绍协方差分析方法,使学生学会如何构造虚拟变量,并通过虚拟变量将离散型的回归变量加入到回归模型的方法。虚拟变量的理解和使用,对逻辑斯第回归、方差分析、非线性回归的假设检验的学习非常有帮助。在理解协方差分析和多元线性回归的关系后,自然而然地将多元回归过过渡到方差分析,即全部回归变量均为离散型的多元线性回归模型即方差分析模型。可通过对虚拟变量加以限置的方法(使数据矩阵满秩),用多元回归方法进行方差分析。由于方差分析数据矩阵的特殊性,可以方便地推导出单因素和双因素方差分析的公式。通过以上学习,应该使学生建立回归分析、协方差分析和方差分析属于同一类模型的概念。
2.4非线性回归
可以简单介绍如何用泰勒多项式对非线性函数线性化后,通过多元线性回归和迭代方法估计参数。由大样本理论,参数的区间估计、假设检验和统计推断等均与多元线性回归相同。
1常用统计学软件的特点
2.2Excel、SAS、SPSS的评价
2.2.2统计分析三种软件用于统计分析的高级程度从高到低依次是:SAS,SPSS,EXCEL,就像例题中的操作一样,只要是Ex-cel“数据分析”库中包括的统计部分,都能通过简单的操作给出简单的统计结果。但是Excel只能进行有限的几种运算(平均、标准误差、中位数、众数、标准差、方差、峰度、偏度、区域、最小值、最大值、求和、观测数、最大、最小(1)、置信度(95.0%)等)。SPSS可以运行众多统计分析。其长处在于变量分析和多变量分析,可以进行多种特定效应检测。SPSS的缺点是运算方法不多,只能依照软件中提供的模式进行运算。SAS可以运行多数常用的统计分析。SAS和SPSS一样都属于专业分析统计软件,而SAS的强势在于方差分析,混合模式分析和多变量分析,其不足在于依次多项逻辑回归,运算方法受到SAS语言的限制。
3结语
假设检验是畜牧兽医类专业生物统计课程的核心内容,如何把握课程脉络,把假设检验的理论、方法讲解透彻,让学生轻松地掌握统计学原理,并能在生产实践中灵活运用,是生物统计课程教学的基本目标。在教学基本目标实现的基础上,使学生产生强烈的求知欲望,树立正确的专业意识,培养学生的统计思维,培育创新型的畜牧高级人才,是统计课程教学的总体目标。生物统计学建立在数理统计和概率论基础之上,具有数学课程的性质,如何把数学的逻辑原理转化为畜牧专业语言,是学生能够轻松学习统计原理、学会统计方法的基础。假设检验即是运用统计方法解决畜牧生产科研实际问题的一种必需方法。假设检验的方法有U检验、t检验、χ2检验和方差分析,各种方法的基本步骤、推理方法以及基本原理是相同的,只是分析的对象不同,数学上的计算方法不同,从而产生了这4种假设检验的方法。
1课程体系设置围绕假设检验
1.1假设检验的目的———揭示规律生物统计课程设置同其他课程一样,首先是绪论,讲解生物统计的基本概念、研究内容、常用术语及发展历程,其中蕴含统计分析的基本特点:由样本推断总体———即假设检验的最终目的为揭示规律。假设检验是方法,是工具,是开启生命科学的钥匙。
1.2假设检验的推断依据———小概率原理课程的第2部分是描述统计,关于数据资料特征的描述,由简入繁、由浅至深,由样本到总体,描述数据的分布特征。重点在于对数据总体分散变异性和集中稳定性特征的理解,数学上用概率特征来描述计算。数据总体的分布特征决定了临床诊断标准值、医学参考值范围以及异常值的确定方法,此即为假设检验的推断依据:小概率事件实际不可能原理,简称小概率原理。这也是建立推断思维方式的基础,是统计课程有别于其他课程的特点,是学生学习统计课程产生为难情绪的原因之所在。所以从传统的确定思维模式到统计的推断思维模式的转变,是学好统计学的基础。
2课堂讲授跃动假设检验
2.1围绕假设检验展开课堂内容生物统计课程的第1堂课解释该课程在畜牧科学中的具体应用,例举当前畜牧业生产面临的问题及科学研究中的热点,不仅使学生明白统计课程要解决的问题,并引导学生对专业有深入的认识、培养专业兴趣。随后在数据资料的分类中,依据生产和科研试验的研究目的,讲解获取的各种类型数据资料,使学生对数据资料的类型有了深入认识,而且对统计分析方法解决这些专业问题产生迫切的需求,从而引发学习生物统计课程的主动性。进而在讲解二项分布时,利用课本例题及收集的有关案例,如检验某药物是否达到药商宣传的治愈率或杀伤力;试验判断某人是否具备特异功能;检验某疫苗是否达到免疫效果等,通过概率计算,利用小概率原理进行推断,从而得出推断结论。通过该类问题的解决,使学生对统计推断产生浓厚兴趣,并初步掌握简单的统计推断方法,具备一定统计推断的能力。最后通过假设检验的各种具体方法的系统学习,全面把握各种假设检验的应用条件、具体步骤,获取推断结论。
2.2围绕假设检验安排课程内容
2.2.1概念、公式为假设检验做铺垫生物统计的教学不要局限于名词如何解释,数学公式如何计算,而要把重点放在每个章节、每个知识在解决什么问题,在统计分析中发挥什么作用。从而在每一章节的讲解以引入问题入手,以解决问题为最终目标,名词、知识点、公式穿插在解决问题的途径中。每个问题的解决方法先从逻辑思维方式考虑解决途径,而最终解决问题的方法是通过数学计算。
生物统计在生产实践和科学研究中具有重要的地位,让学生学懂学通会用,对推进畜牧产业发展和畜牧科技进步有不可或缺的重要作用。生物统计课程体系的不断发展完善,对我国畜牧业发展有不可低估的推动作用。讲好生物统计课程,培养畜牧高级人才,我们在不断探索追求。
《田间试验与生物统计》是农学类专业的一门专业基础课,由田间试验设计和生物统计两部分构成。该课程主要培养学生进行农业科学试验的能力和对试验结果进行科学分析的能力,为今后从事农业科学研究打下坚实的理论基础。
1《田间试验与生物统计》课程的教学难点
《田间试验与生物统计》是农学类专业最困难的课程之一,是应用概率论和数理统计的原理来研究生物界数量变异规律的一门学科,是概率论与数理统计在生物方面的应用,属于应用数学的范畴,因此学好该门课程要求学生有较扎实的数学基础和较强的逻辑推理能力。现在高职学生普遍数学基础差,入学后开设的数学课程又很少,数学基础普遍薄弱。而该课程课堂教学抽象的概念较多,数学公式多,前后章节的基本知识、公式联系密切,学生如果有一点没掌握好,以后的学习就会遇到很大的困难。所以相比其他专业课来说,难教、难学、难掌握,学生容易产生畏难情绪。
2教学中存在的主要问题
(1)田间试验的教学与生产实际相脱节,课堂讲授多,实践操作少;各项实习要求与生产季节紧密联系,而在实际教学中很难达到,学生普遍操作能力差。(2)教学过程大都以课堂讲授为多,缺少生物统计应用的实践环节,学生缺乏应用生物统计知识的实际训练。(3)高职教材相对落后,只是本科教材的一个翻版,理论性强,原理多,公式推导多、与生产实际联系不紧密,缺少学生实训环节。(4)由于学生开设的课程多,每门课的教学学时被大大压缩,不能完全满足教学的需要。
3加强实训基地的建设,结合科学研究,开展现场教学
4积极进行教学方法的改革,提高教学质量
4.2教学组织严谨,灵活,协调好教与学的关系在教学的组织上,讲究教学策略,提高教学艺术,创设良好的教学情境,培养学生判断、思维、推测、论证等多项技能,促进其逻辑思维能力的发展。课堂讲授是生物统计教学过程的主要形式,授课时应注意概念准确,条理清楚,逻辑性强,把握好课程的深度、广度,突出教学重点,难点,板书简洁、清晰,将运算步骤、公式使用的条件讲述清楚。重视讲课效果的信息反馈,及时根据反馈信息来调整授课进度与授课方式,力求使教与学两方面协调一致,以提高教学效果。
5加强学生进行生物统计的综合实训练习,提高学生的分析应用能力
生物统计学是运用数理统计的原理和方法来分析和解释生物界各种现象和试验调查资料的一门科学,是应用统计学的一个分支。随着生物学研究的不断发展,对生物体的研究和观察已不再局限于定性的描述,而是需要从大量调查和测定数据中,应用统计学方法,分析和解释其数量上的变化,以正确制定试验计划,科学进行试验结果的分析,从而做出符合科学实际的推断[1]。因此,生物统计学是生物学领域科学研究和实际工作中必不可少的工具。目前,各高等学校生物类专业都将生物统计学作为一门重要的基础课程纳入到教学体系中以促进新型综合性生物学高级人才的培养。
1《生物统计学》(第一版)
2《生物统计学》(第二版)
3《生物统计学》(第三版)
4《生物统计学》(第四版)
5《生物统计学学习指导》
生物统计学是一门实用性很强的工具性课程。学习生物统计学需要举一反三,既要对生物统计学的基本概念、基本内容有较熟悉的理解和掌握,也要通过例题学习了解不同统计问题的解题思路和解题方法,更要通过习题练习来熟练掌握这些方法。因此,编写一本与《生物统计学》教材配套的学习指导书就显得十分必要。由于课时的限制,课堂讲授仅限于基本的统计问题和部分扩展性知识,用于介绍和解析各种统计方法的例题也只能选择少部分经典例,这就不可避免地会使一些问题得不到细致分析,部分内容的叙述和公式推导也不够深入。此外,前版教材虽然在书后附有各章习题的答案,但也仅是简单的参考答案,而没有详细的解题分析和解题过程。
基于有效解决上述问题的考虑,更好地配套生物统计学教学,我们结合《生物统计学》(第四版)的出版,编写了《生物统计学学习指导》[8],旨在为《生物统计学》的学习提供概要性总结、资料扩充、难点解析,通过增加具体实例和对习题的解答,帮助学生进一步理解和掌握基本概念、基本内容和基本方法。其内容编排与第四版教材各章内容相对应,共分十四章。每章包括目的要求、内容提要、难点评析、例题解析、习题解答、自我测验等六部分。书后附有自我测验答案。目的要求部分提出了本章要达到的基本要求。内容提要部分概要地介绍了本章的主要知识点和难点、关键点。难点评析部分是对本章的疑难问题进行较细致的剖析,适当扩充了部分内容,对重要问题的解题思路、解题方法以及注意事项作了介绍。例题解析部分是在教材例题的基础上,重点选取部分代表性的例子对其解题过程进行了系统分析、计算和评述。习题解答部分是对教材每章后所附思考练习题一一进行了详细解答。自我测验部分则是结合《生物统计学》各类考题形式,设计了部分题目,主要包括填空、判断、名词解释、单项选择题和计算等五种类型,供读者选择练习。书后附有自我测验答案,供参考。
《生物统计学》是一门应用性较强的专业课。对于生物学专业学生统计学教材的选择应以“大统计思想”为主线,以实际案例为依托,以介绍运用方法为目的,突出教材的科学性、系统性、实用性[9~10]。我们教学组自2002年以来一直使用网络及多媒体从事《生物统计学》教学,并且完成了《生物统计学》校级网络课程的建设。我们将在四版教材出版的基础上,结合教学实践,进一步完成与教材配套的试题库建设,以实现生物统计学教材建设的立体化。
生物统计是数理统计在生物学中的应用,是用数理统计的原理、方法来分析数量资料和生物界各种现象的一门学科,其理论知识体系和学习方法有别于畜牧兽医专业的其他课程,因此被许多高职畜牧兽医专业学生认为是较难学习和掌握的一门课程。以至于出现了“教师教得辛苦,学生学得痛苦”的现象。造成这种现象的主要原因之一就是传统的教学存在很大的问题。
一、项目-分层教学法的提出
项目教学法是师生通过共同实施一个完整的项目而进行的教学行动。它蕴含着建构主义学习理论、情境认知与学习理论、实用主义教育理论等,是一种全新的教学方法。学生通过亲自调研,查阅文献,收集资料,分析研究,动手操作等过程,将学到的理论知识与现实中的实际问题紧密结合,训练提高综合素质。
“从理论上讲,项目教学法是一种几乎能够满足行动教学所有要求的教学培训方法”[1],但其弊病之一就是容易造成在项目的实施过程中,工作由成绩好的学生包办,一些成绩差的学生可能会产生“破罐子破摔”的心理。高职院校学生生源复杂,除普通高中毕业生外,还有对口升学的中专、技校、职业高中的毕业生,以及五年一贯制的初中毕业生,学生的学习基础水平差异十分明显,更容易产生这一弊端。要弥补这一不足,在实施项目教学的同时引入分层教学是行之有效的方式。
分层教学是在多元智能理论、“最近发展区”理论以及建构主义学习理论和“人本主义”学习理论等现代教育思想和教育理论指导下,从学生的知识基础、认知水平和个性差异出发,针对不同层次学生的特点选择不同的教学目标和内容,因材施教,发挥个性特长,让不同层次的学生都得到充分发展的一种教学方法,为不同条件的学生创造出适合自身特点的教育氛围,是面向全体学生的教育[2]。
项目-分层教学法是以尊重学生的个体差异、知识层次和兴趣爱好为前提,以层级化的教学项目为指导,以项目教学和分层教学的有机结合为主要形式,以教师引导各层次的学生在各自的最近发展区主动发展、获得成功体验为宗旨的一种教学方法。它是将不同层次的教学项目以需要解决的问题或需要完成的任务的方式交给学生,在教师的指导下,由学生自己按照实际工作的完整程序进行信息收集、项目决策、项目实施、成果展示、评估总结的过程。
二、项目-分层教学法的教学设计
(一)学生层次的确定
通过对班内学生的情况进行全面调查来确定采用项目-分层教学法时学生类型和层次。充分了解和尊重学生是项目-分层教学法实施分层时的基础,也是该教学方法能顺利进行、并能达到预期效果的关键。一般将学生分成A、B两个层次,不同层次的学生特点见表1。
(二)分层教学项目的制定
不同层次的学生特点不同,所以要为他们制定不同的教学项目。A、B不同层次学生的教学项目特点见表2。
项目-分层教学法的关键在于项目任务的设计,要用具体的实践项目引出任务,还要考虑到不同层次学生的能力差别,而且要能巧妙地将知识的掌握与能力的培养同时贯穿其中。
(三)项目-分层教学的实施
1.选择项目,划分小组
教师根据不同层次学生的特点,将教学内容分解成适合不同层次学生的教学项目。
2.分析问题,设置情景
为了更好地完成项目,应创设或引导学生进入一个与目前学习内容有关的、基本接近现实的情景环境中,解决现实问题。
3.自主协作,收集信息
小组成员协作收集有助于解决问题的信息、资料。
4.整理信息,确定工作步骤
小组成员通过整理和研究所搜集到的信息,根据项目任务要求确定项目工作步骤和程序,进行人员分工。
5.实施计划,完成项目
学生根据制定的计划实施项目,注意与他人协作,教师监控项目的实施全过程。当发现计划有问题时,经集体讨论后应该及时修正计划。
6.展示成果,总结经验,评定成绩
项目完成后,每一小组都要向全班展示自己的项目成果,并作必要的说明,让学生交流心得与经验。在评定成绩时,先由学生自评、同学互评,然后由教师进行总结性评价。
三、项目-分层教学法在生物统计教学中的应用
根据项目-分层教学法的具体要求,在兽医专业生物统计课程教学中,运用项目-分层教学法开展了教学实验研究。设置实验组与对照组,两组只有教学方法这单一因素不同,而其他各种条件均相同,以此来研究项目-分层教学法在教学中的作用。
(一)实验组教学安排
选取兽医09306、09307班作实验组,运用项目-分层教学法,实施五个教学项目(见表3)。学生分层分组组织学习,不同层次的学生完成教学项目的学习过程不同,教师采用的教学形式也不同,在A层学生的学习过程中,教师采取的是间接教学形式,通过咨询、建议等形式完成教学任务;在B层学生的学习过程中,除了间接教学,教师还需要通过讲授、示范等直接教学方法完成教学任务(见图1)。
(二)对照组教学安排
选取与兽医09306、09307班入学成绩基本相同的兽医09304、09305班为对照组,采用用传统教学法教学。
(三)教学效果的考核与评价
对学生的考核采取传统的考试方式,通过笔试和机试考核学生对知识掌握的情况。经过分类统计,实验结果见表4、表5。
检验结果表明,实验组和对照组之间存在显著差异。实验组采用项目-分层教学法,学生学习以项目为中心,有明确的任务,学生围绕项目自主学习,学习的主动性、积极性能得以发挥。同时,学习过程需要依靠组员共同努力、相互协作才能完成,学生的协调能力、团队精神也得以提高,所以考试成绩优良率极显著高于对照组。
另外,我们向参加对比教学试验的四个班的学生发放问卷,由学生对两种教学法进行评价,评议等级分为好、中、差三等。共发放问卷124份,有效回收率100%,评价结果见图2。
问卷结果显示,学生普遍欢迎项目-分层教学法。在此基础上,我们组织实验组的学生召开座谈会,讨论项目-分层教学法的优劣。发现学生思维非常活跃,认为项目-分层教学法有利于他们开拓思维,能够做自己想做的事情,充分调动学习的积极性;能发挥学生的潜能,使每个学生都有收获,有成就感;由学生自己解决问题,提高自学能力和综图2学生对项目-分层教学法和传统教学法的评价合能力;小组交流学习,提高协调能力,培养团队精神;小组之间开展学习竞赛,增强竞争意识,以适应竞争激烈的社会。
对照组由于传统教学法具有完整的理论体系,学生对生物统计学知识的学习比较系统,但学习时难度较大,容易学完就丢,学习效果不好。
四、项目-分层教学法的实践分析
(一)项目-分层教学法的特点
1.以实际任务贯穿教学的整个过程
教师依据教学内容选取任务项目,整个教学过程也就确定了,学生通过完成项目掌握课程教学内容。任务的选择相当重要,既要涵盖生物统计学教学大纲所有教学内容,又要与学生所学专业挂钩。
2.采取以小组为单位的学习形式
小组的每个成员都是同一层次的学生,采取共同努力、互相协作的学习方式。每个小组负责完成选定项目中的一个模块,小组成员在学习过程中的数据资料和项目成果为全体组员所共享。
3.对学生学习的评价是以完成项目情况为依据
由学生自己填写项目课程评估表和项目完成报告书,对项目完成情况进行自我评价,然后交小组内其他成员分别评定打分,最后由教师对小组完成项目情况进行评定。在评价和考核时应以形成性评价为主,终结性评价为辅,评价重点是项目执行的整个过程,包括每一位学生在项目中的参与程度、作用以及合作能力等。突出对学生创新精神、实践能力的形成与提高方面的评价,项目成果排在其次。个人、小组和教师的评价分数都必须有据可循。学生的最终评价得分计算公式为:(自我评价+小组其他成员评价的平均值+教师评价×2)÷4。
(二)项目-分层教学法的不足与改进措施
教学中在确定教学项目时,每个教学项目只是在完成的过程上有区别,项目本身没有高低之分,学生根据自身条件自主选择教学项目。在划分项目小组时,坚持学生自愿和教师指导相结合,学生实行隐性分层,教师心中有数即可,不必公布出来。另外,在划分项目小组时,可以同层次学生同组和异层次学生同组相结合,交替使用,避免上述弊端的出现。
(三)项目-分层教学法实施的保障
1.合理安排教学计划
2.设备设施投入
项目-分层教学需要理论联系实际,这就要求学校与社会、企业密切合作,使学生在完成项目中真正得到培养和锻炼,成为社会、企业需要的实用型人才。在企业培训力量不足的情况下,学校应建立模拟实验室,这需要投入巨大的财力、物力和人力。加大对项目-分层教学模式投入,可以完善和促进其在实用型人才培养上的作用。
3.培养一体化教师
在项目-分层教学中,许多教学项目是教师根据教学目标和生产实际设计的。教学内容不仅涉及本学科的专业知识与技能,还可能涉及相邻学科甚至跨学科的知识与技能,以及企业的生产实际。这就要求职业院校的教师不仅具有全面的专业理论知识,还必需有丰富的实践经验和动手能力。因此,学校应加强一体化教师的培养与培训,以满足职业教育岗位的需求。
摘要:根据21世纪对生物统计学课程的重新定位,在生物统计学精品课程建设中重点突出了教学方法和教学手段的改革,强化了学生能力的培养。
关键词:生物统计学;精品课程;教学改革
一、引言
随着生物科学的发展,只有定性的结论已不能满足实践的需要,实现生物科学结论定量化是人们长期追求探索的目标;生物统计学是生物学科定量化的重要分析理论与方法,生物统计学是生物学科应具备的基本知识和素质,与生命活动有关的各种现象中普遍存在着随机现象,大到森林陆地生态系统,小至分子水平,均受到许多随机因素的影响,表现为各种各样的随机现象,而生物统计学正是从数量方面揭示大量随机现象中存在的必然规律的学科。因此,生物统计学是一门在实践中应用十分广泛的工具学科,它是生命科学各专业的专业基础课,对后续生命科学课程学习和生物科研有重要作用。
同时,生物统计作为数理统计在生物学领域的应用,是教学难度较大的一门课程。因此,在生物统计学精品课程建设过程中,针对各专业培养目标的定位,因材施教,更新教育理念,加强实践训练,在教学方法和教学手段上进行改革和大胆探索。
二、二十一世纪对生物统计学课程的重新定位。
(一)新世纪对生物统计学课程提出的新要求。
二十世纪上半叶农业和遗传统计学首先获得了发展,在其基础上发展起来的生物统计学、统计流行病学、随机化临床试验学已经成为攻克人类疾病的一个里程碑。这在过去的半个世纪里显著提高了人类的期望寿命。
21世纪人类基因组,基因芯片等实验科学产生出的巨量数据,需要新工具来组织和提取重要信息。
将数据转化为信息需要统计理论和实践方面的洞察力、技术和训练。
未来的生物统计学将会与信息技术密切结合,较少侧重传统数理统计,而会更多注意数据分析,尤其是大型数据库的处理。生物统计学越来越不同于其它数学领域,计算机和信息科学工具至少和概率论一样重要。
(二)生物统计学对大学生素质培养的作用。
生物统计学的一个重要特点就是通过样本来推断和估计总体,这样得到的结论有很大的可靠性但有一定的错误率,这是统计分析的基本特点,因此在生物统计课程的学习中培养了一种新的思维方法———从不肯定性或概率的角度来思考问题和分析科学试验的结果。
生物统计学是通过个别的试验研究得出其一般性结论,属于归纳推理的范畴。但其有别于简单枚举法和科学归纳法,是一种或然性归纳推理或者概率归纳推理。在生命科学的研究中绝大多数涉及到的是随机事件,因此,生物统计学不仅是试验设计与统计方法的教学,更重要的还是大学生思维方式的培养,这对提高大学生的素质很有必要。
生物统计学包括试验设计和统计方法两个有机联系的组成部分。通过试验设计的教学可提高大学生设计研究课题试验方案的能力,使之明确课题的研究目的、试验因素与水平以及试验设计方法等方面的内容。通过统计方法的教学除让学生弄清各种统计方法的内涵外,还需要使学生能够正确地选择最适合的统计方法,以揭示资料潜在的信息,达到研究的最终目的,从而提高大学生科学研究素质。
三、教学方法和教学手段的改革。
(一)加强电子课件及网络平台建设。
生物统计学是应用概率论和数理统计原理研究生物界数量变化的学科,而概率统计的理论和思维方法对本科生来说有一定的难度,加之课程学时的减少(由原来的60-70学时,降到现在的40学时左右),如何深入浅出地引导学生入门,并使学生在了解概率统计思想的基础上,掌握常用统计分析方法的应用及使用条件是课程的教学难点。为此,我们利用多媒体技术,制作了与教材配套的课件,通过在课堂上把抽象内容形象化与直观化,收到了良好教学效果。建设了一个生物统计学教学网络支撑平台,现有课程简介、教学大纲、师资力量、授课教案、电子版《生物统计学》教材、课程录像、实习指导、在线测试题、参考文献、其它教学资源等栏目,免费向全校师生开放。
(二)将多媒体教学优势与学生的认知规律有机结合,用较少的学时得到良好的教学效果。
多媒体具有信息量大、形象化、直观化的特点。
但是如果不能很好地将多媒体这些特点与学生的认知规律相结合,多媒体教学就可能会带来一些弊端诸如:(1)内容多,幻灯片变换快,由照本宣科变为照屏宣科,为新的“满堂灌”;(2)课件图片多,内容以展示为主,缺乏启发性;(3)教学内容常用满屏的方式显示(即所谓“死屏”),老师照着屏幕上的内容给学生讲解,失去了传统教学方法,老师边讲边板书能给学生留下比较深刻印象的特点,缺乏吸引力。
而多媒体在教学中只能充当工具的角色,在教学过程中必须将多媒体信息量大、形象化、直观化的特点与学生的认知规律紧密结合在一起。在制作课件时,采用启发式教学方式,精炼教学内容,模仿传统教学书写板书的过程,根据教学内容的难易程度,采用逐字、逐句、逐段显示教学内容的动画方式。在课堂教学中,老师仍然保持传统教学方法的教姿教态,在授课的过程中与学生保持互动,根据学生在课堂上接受知识的能力,掌握屏幕上显示内容的速度,必要时辅以板书进行讲解。这样做既发挥了多媒体教学的特点,又充分照顾到学生的认知规律,在内容没有缩减,学时减少近三分之一的情况下,仍然取得良好的教学效果。
(三)长期坚持教育教学方法及教学规律的研究。
生物统计学的理论基础是概率论与数理统计,从这个层面上讲,它有非常浓的数学味道,但是它又有别于概率论与数理统计,生物统计学更主要强调的是概率论及数理统计的思想和方法在解决生命科学中一些具体问题的应用。因此在教学过程中就存在一个“度”的把握问题,如果将概率论及数理统计的原理讲得太多,一是学时不允许,二是学生难以消化,得不到好的教学效果;如果只注重方法的讲解,学生知其然不知其所以然,就会误入乱套公式的歧途。经过将教学的重点放在教学中引导学生重点掌握统计方法的功能与用途,方法与步骤,防止各类方法的误用,淡化定理的证明与公式的推导。在教学内容的安排上采用“保干削枝”,即在学时减少很多的情况下,将一些次要的统计方法去掉,也要保证有足够的学时讲授理论分布与抽样分布、统计假设测验等方面的内容,让学生掌握生物统计学中所蕴含的概率论及数理统计的思想精髓,从而避免学生乱套统计公式。
(四)密切跟踪生命科学发展的前沿动向,探索生物统计学解决前沿问题的理论与方法。
统计学在生物学中的应用已有长远的历史,许多统计的理论与方法也是自生物上的应用发展而来,而且生物统计是一个极重要的跨生命科学各研究领域的平台。现在基因组学、蛋白质组学与生物信息学的蓬勃发展,使得生物统计在这些突破性生物科技领域上扮演着不可或缺的角色。
在课程建设中,随时注意纳入生物统计学在前沿领域研究应用的内容,增强课程的活力,提高教师和学生面向生物产业主战场解决实际问题的能力。
四、加强实践教学,注重学生能力培养。
生物统计学要不要开实验课,怎样开实验课,一直存在争议,在此认为生物统计学不仅应该开设实验课,而且还要将实践教学的重点放在计算机技术和统计软件的应用上,让学生不仅掌握统计方法,而且加深对原理的认识,获得就业或升学的必备计算机统计技能,提高解决复杂问题的能力。
(一)开展统计软件的实习,扩大学生的视野,提高学生素质。
20世纪20年展起来的多元统计方法虽然对于处理多变量的种类数据问题具有很大的优越性,但由于计算工作量大,使得这些有效的统计分析方法一开始并没有能够在实践中很好推广开来。而电子计算机技术的诞生与发展,使得复杂的数据处理工作变得非常容易,所以充分利用现代计算技术,通过计算机软件将统计方法中复杂难懂的计算过程屏障起来,让用户直接看到统计输出结果与有关解释,从而使统计方法的普及变得非常容易。在课程体系改革中,各课程的教学时数与达到培养目标所需完成的教学内容相比还是不足的。为此,可以通过标准的统计软件的教学实习来达到以点带面,扩大学生视野,提高学生素质。
为此我们建立了一个专用于实习教学的生物统计电脑实验室。现共有50余台电脑,并连接到校园网。实验室配备有指导教师,负责对上机的学生答疑。除按教学计划进行的正常实习教学外,实验室还对优秀学生免费开放,鼓励他们结合教师的科研活动,应用所学生物统计学知识,学习新的生物统计学知识,掌握应用计算机解决生物统计学问题的技能。
(二)全方位、多层次的实践教学。
为了进一步培养学生实际动手能力和科学严谨的治学态度,必须将本课程的实践教学活动延伸到课堂教学外,开展全方位、多层次的实践教学。
组建了西南科技大学生命科学与工程学院以后,由原来的单一农科专业变成了理、工、农三大学科均有专业的格局。虽然专业的学科归属不同,但有一点是相通的,其内涵均属于生命科学的范畴。以科学研究的方法进行划分,均属于实验科学。
掌握正确的实验设计方法,从不确定性数据中挖掘事物的客观规律,是实验科学工作者必备的技能。因此,我们将原来只是在农科专业上延伸实践教学的作法推广到全院的所有专业,结合实验课教学的改革,对发酵工艺学实验、植物细胞工程实验、食用菌实验、微生物学实验等课程的内容全部或部分改为用生物统计学指导学生自主进行实验设计,把过去单一的实验流程、样品观察或检测实验改变为试验条件的优化试验,提出在不同条件下对样品测定的比较试验设计、单因素试验设计、多因素试验设计、正交试验设计、均匀试验设计,对试验结果要求学生使用统计学的方法对进行分析和讨论,最后得出最佳试验条件。
这样的实验教学改革起到了一箭双雕的作用,从专业基础课或专业课的角度看,改验证性实验为设计型、综合性实验,增强了学生解决实际问题的能力,培养了学生创新思维的能力;从生物统计学角度看,将课程的教学实践延伸到课程外,弥补了学时的不足,更重要的是学生将自己学到的统计学知识,转化为解决实际问题的能力,知识得到很好的内化。
此外,在学生课外科技活动中指导学生选用正确的实验设计和数据的统计分析方法,提升科技作品的档次;在毕业论文(设计)中要求学生采用恰当的生物统计学方法进行设计与分析,写出高质量的毕业论文(设计)。
通过这样的教学实践,训练了学生的统计思维能力,使学生充分认识到掌握生物统计学这一工具的重要性和必要性,增强了学生学好用好这门工具的信心,提高了学生从复杂的生命现象中挖掘事物客观发展规律的能力。
精品课程是集科学性、先进性、教育性、整体性、有效性和示范性于一身的优秀课程。作为精品课程的载体,应具有一流的教师队伍、一流的教学内容、一流的教学方法、一流的教材、一流的教学管理等特点。与之相比,我们在生物统计学精品课程的建设上,才刚刚起步,今后还要在教材建设、师资队伍建设、科学研究等方面加大力度,将生物统计学建设成体现现代教育教学思想、符合现代科学技术和适应社会发展进步的需要、能够促进学生的全面发展而深受学生欢迎的一门课程。
生物信息学融合了生物技术、计算机技术、数学和统计学的大量方法,已逐渐成为发现生命过程中所蕴涵知识的一门重要学科。其基本问题主要包括:DNA分析、蛋白质结构分析、分子进化。医学统计学作为医科院校的基础课程之一,长期以来其理论和方法就广泛应用于临床医学、基础医学的各类研究中。随着生物新技术的诞生,在推动生物信息学发展的同时,医学研究对象也由宏观的病人、生物组织拓展到微观的基因领域,所面对的实验数据在性质和结构上也都有所不同,这对医学统计学的应用提出了新的更高的要求。
一、概率分布
概率分布(probabilitydistribution)是医学统计学中多种统计分析方法的理论基础。授课内容一般包括:二项分布、Possion分布、正态分布、t分布、F分布等。
借助概率分布常常可以帮助我们了解生命指标的特征、医学现象的发生规律等等。例如,临床检验中计量实验室指标的参考值范围就是依据正态分布和t分布的原理计算得到;许多医学试验的“阳性”结果服从二项分布,因此它被广泛用于化学毒性的生物鉴定、样本中某疾病阳性率的区间估计等;而一定人群中诸如遗传缺陷、癌症等发病率很低的非传染性疾病患病数或死亡数的分布,单位面积(或容积)内细菌数的分布等都服从Poisson分布,我们就可以借助Poisson分布的原理定量地对上述现象进行研究。
在生物信息学中概率分布也有一定应用。例如,Poisson分布可以用于基因(蛋白质)序列的相似性分析。被研究者广泛使用的分析工具BLAST(BasicLocalAlignmentSearchTool)能迅速将研究者提交的蛋白质(或DNA)数据与公开数据库进行相似性序列比对。对于序列a和b,BLAST发现的高得分匹配区称为HSPs。而HSP得分超过阈值t的概率P(H(a,b)>t)可以依据Poisson分布的性质计算得到。
二、假设检验
假设检验(hypothesis)是医学统计学中统计推断部分的重要内容。假设检验根据反证法和小概率原理,首先依据资料性质和所需解决的问题,建立检验假设;在假设该检验假设成立的前提下,采用适当的检验方法,根据样本算得相应的检验统计量;最后,依据概率分布的特点和算得的检验统计量的大小来判断是否支持所建立的检验假设,进而推断总体上该假设是否成立。其基本方法包括:u检验、t检验、方差分析(ANOVA)和非参数检验方法。
假设检验为医学研究提供了一种很好的由样本推断总体的方法。例如,随机抽取某市一定年龄段中100名儿童,将其平均身高(样本均数)与该年龄段儿童应有的标准平均身高(总体均数)做u检验,其检验结果可以帮助我们推断出该市该年龄段儿童身高是否与标准身高一致,为了解该市该年龄段儿童的生长发育水平提供参考。又如,医学中常常可以采用t检验、秩和检验比较两种药物的疗效有无差别;用2检验比较不同治疗方法的有效率是否相同等等。
这些假设检验的方法在生物实验资料的分析前期应用较多,但由于研究目的和资料性质不同,一般会对某些方法进行适当调整和结合。
例如,基于基因芯片实验数据寻找差异表达基因的问题。基因芯片(genechip)是近年来实验分子生物学的技术突破之一,它允许研究者在一次实验中获得成千上万条基因在设定实验条件下的表达数据。为了从这海量的数据中寻找有意义的信息,在对基因表达数据进行分析的过程中,找到那些在若干实验组中表达水平有明显差异的基因是比较基础和前期的方法。这些基因常常被称为“差异表达基因”,或者“显著性基因”。如果将不同实验条件下某条基因表达水平的重复测量数据看作一个样本,寻找差异表达基因的问题其实就可以采用假设检验方法加以解决。
如果表达数据服从正态分布,可以采用t-检验(或者方差分析)比较两样本(或多样本)平均表达水平的差异。
但是,由于表达数据很难满足正态性假定,目前常用的方法基于非参数检验的思想,并对其进行了改进。该方法分为两步:首先,选择一个统计量对基因排秩,用秩代替表达值本身;其次,为排秩统计量选择一个判别值,在其之上的值判定为差异显著。常用的排秩统计量有:任一特定基因在重复序列中表达水平M值的均值;考虑到基因在不同序列上变异程度的统计量,其中,s是M的标准差;以及用经验Bayes方法修正后的t-统计量:,修正值a由M的方差s2的均数和标准差估计得到。
三、一些高级统计方法在基因研究中的应用
(一)聚类分析
聚类分析(clusteringanalysis)是按照“物以类聚”的原则,根据聚类对象的某些性质与特征,运用统计分析的方法,将聚类对象比较相似或相近的归并为同一类。使得各类内的差异相对较小,类与类间的差异相对较大1。聚类分析作为一种探索性的统计分析方法,其基本内容包括:相似性度量方法、系统聚类法(HierarchicalClustering)、K-means聚类法、SOM方法等。
聚类分析可以帮助我们解决医学中诸如:人的体型分类,某种疾病从发生、发展到治愈不同阶段的划分,青少年生长发育分期的确定等问题。
近年来随着基因表达谱数据的不断积累,聚类分析已成为发掘基因信息的有效工具。在基因表达研究中,一项主要的任务是从基因表达数据中识别出基因的共同表达模式,由此将基因分成不同的种类,以便更为深入地了解其生物功能及关联性。这种探索完全未知的数据特征的方法就是聚类分析,生物信息学中又称为无监督的分析(UnsupervisedAnalysis)。常用方法是利用基因表达数据对基因(样本)进行聚类,将具有相同表达模式的基因(样本)聚为一类,根据聚类结果通过已知基因(样本)的功能去认识那些未知功能的基因。对于基因表达数据而言,系统聚类法易于使用、应用广泛,其结果——系统树图能提供一个可视化的数据结构,直观具体,便于理解。而在几种相似性的计算方法中,平均联接法(AverageLinkageClustering)一般能给出较为合理的聚类结果2。
(二)判别分析
判别分析(discriminantanalysis)是根据观测到的某些指标的数据对所研究的对象建立判别函数,并进行分类的一种多元统计分析方法。它与聚类分析都是研究分类问题,所不同的是判别分析是在已知分类的前提下,判定观察对象的归属3。其基本方法包括:Fisher线性判别(FLD)、最邻近分类法(k-NearestNeighborClassifiers)、分类树算法(ClassificationTreeAlgorithm),人工神经网络(ANNs)和支持向量机(SVMs)。
判别分析常用于临床辅助鉴别诊断,计量诊断学就是以判别分析为主要基础迅速发展起来的一门科学。如临床医生根据患者的主诉、体征及检查结果作出诊断;根据各种症状的严重程度预测病人的预后或进行某些治疗方法的疗效评估;以及流行病学中某些疾病的早期预报,环境污染程度的坚定及环保措施、劳保措施的效果评估等。
在生物信息学针对基因的研究工作中,由于借助了精确的生物实验,研究者通常能得到基因(样本)的准确分类,如,基因的功能类、样本归结于疾病(正常)状态等等。当利用了这些分类信息时,就可以采用判别分析的方法对基因进行分类,生物信息学中又称为有监督的分析(SupervisedAnalysis)。例如,基因表达数据分析中,对于已经过滤的基因,前三种方法的应用较为简单。而支持向量机(SVMs)和人工神经网络(ANNs)是两种较新,但很有应用前景的方法。
四、意义
生物信息学不仅是医学统计学的研究前沿,更是医学研究由宏观向微观拓展的重要领域,其研究内容已逐渐为多数医学院校的学员了解和熟悉。而如何对新技术产生的生物实验数据进行准确合理的分析,却成为生物信息学研究的主要瓶颈之一。
在医学统计学课堂教学中引入生物信息学实例,而不仅仅局限于常见的医学、卫生领域的例子,将难以理解的统计理论和方法与前沿的生物实例相结合,拓宽了学员的视野,提高了学员的学习兴趣,更可以加深对所学知识的理解;与此同时,使学员掌握了生物实验数据的先进分析方法,扩大了学员的知识面,提高了他们今后开展医学科研工作的能力。
还有一些医学统计学方法目前也逐渐应用于生物信息学研究中,诸如:遗传算法、熵理论等等。但这些方法已经超出了医学统计学课堂教学的范围,我们将尝试在第二课堂或选修课中,作为补充知识进行讲授,供那些学有余力的学员学习交流。
摘要:分析目前高校传统教学模式下生物统计学教学之不足以及理论课程与社会实践之间的差距,提出在课程整合模式下生物统计学课程的改革措施,指出在教学中融入多元化的概念,推进课程形式、教学模式和教学资源三个方面的有效整合。在教学中逐步实现新的教学模式,为全面提高学生素质提供保障。
关键词:课程整合;生物统计学;素质能力
一、生物统计学的教育现状
二、课程整合理论对生物统计学教学的启示
基于上述课程设置及教育中的问题,南方医科大学生物统计学系在多年的教学实践中总结构建了“课程整合”体系。早在19世纪末20世纪初,在杜威(JohnDewey)发起的进步教育运动中,就有了一种综合课程的思想,他强调在理论与实践中倡导课程整合。ParkW.J.在参考了各类界定的基础上,认为整合的课程是超越单门学科有目的地组合知识、观点和探究问题,以达到学习者对学习内容更深层的理解[2]。根据目前生物统计学的教学环境和条件,深化生物统计学课程整合涉及到课程形式、教学模式和教学资源三个方面。
(一)课程形式的整合
(二)教学模式的整合
(三)教学资源的整合
三、结束语
医学课程改革中的“学科细分”和“课程整合”并不矛盾,课程整合的主要目的是消除各学科教学间的壁垒,促进学术的交流;同时,课程整合有利于促进教师之间的交流和合作。在高等医学院校,我们要着眼于未来,实现基础与临床、医学与人文、公共卫生与临床医学的有机整合。
作者:关颖张国霞单位:南方医科大学
一、生物统计学课程的地位和作用
二、生物统计学教学存在的主要问题
,决定着教学质量的好坏以及学生学习积极性是否能得到最大限度地调动[16]。但是现阶段我国许多高校的考试制度较为死板,缺乏合理性和灵活性。如在学期期末考试中规定一定数量的题型,当然,这种考试制度对于规范考试是必须的,但是应该根据具体课程而定,而不能一概而论。就生物统计学课程而言,如果规定一定数量的考试题型(比如四种题型),那么教师只能根据考试规定勉为其难考虑四种题型。比如说名词解释、填空、问答、计算这四种题型。很明显,这种考试方式只是较为死板的考试,不能真证体现生物统计学课程的本质,不能很好考察学生对生物统计学原理的掌握及运用。
三、生物统计学教学策略
针对目前生物统计学存在的问题,笔者根据自己近十年的生物统计学教学实践,就如何提高生物统计学的课堂教学效果,提出如下建议。
1.选择合适的教材并优化教学内容。教材是教学最基本的工具,选择适合的生物统计学教材,能够保证教学过程的顺利进行,并能提高教学质量。针对目前市场上的不同种类教材,结合学生的实际,选择统计学理论与实际相结合,试验设计与统计原理相结合,统计软件与统计学原理相结合的生物统计学教材进行教学较为合适。据笔者过去的教学实践,该课程授课内容不宜过多和过深,授课内容过多学生精力会分散,分不清重点,而过深则影响学生的接受效果[17]。因此应根据学生实际优化教学内容,坚持以试验研究实例为线索,以科学的试验研究方法为主线,理论原理和实际例子相结合,从试验研究的选题和设计、试验方案的制定和实施、试验数据的收集和整理到试验数据的统计分析,最后做出科学的推断等,尽可能把抽象的统计学概念和原理转变为具体的实例,提高学生的学习兴趣,使其更好地理解和掌握所学的课程内容[7]。很好激发学生学习生物统计学课程的兴趣,从而更好地提高教学效果和教学质量。
3.提高自身知识结构和科研能力,注重案例教学。生物统计学教材大多理论性强,内容枯燥,容易使学生产生厌烦感。照本宣科的传统授课方法,更会使学生失去兴趣,对于培养学生的独立思考能力和创造能力十分不利。在现代教学中,教师既是知识的传授者,也是教学活动的组织者,在教学过程中起到关键的作用,教师知识水平的高低直接影响学生的学习效果[18]。因此教师应不断加强对生物统计学基本原理、基本理论和基本方法的学习与实践。另外,教师还应不断加强自身的科研能力,在教学过程中将自己的科研工作或生产实践案例贯穿到教学中,以自身科研实例辅助教学,增加学生的学习兴趣,培养学生的统计学思维以及对统计学的实际应用能力。
4.加强试验设计的教学和实践。试验设计又称为实验设计,它以概率论和数理统计的原理和方法为理论基础,科学地、经济地设计研究方案的一项技术。一个良好的试验设计,可以用最少的实验次数,得到足够的实验数据,从而能减少人力、物力和财力的投入[6]。由于生物统计学理论性和实践性较强,且涉及大量的数学公式、抽象的概念和复杂的内容。因此在生物统计学的教学中应充分调动学生学习的主动性,加强学生对生物统计学原理、知识的理解和综合运用,强化学生综合试验设计的锻炼及其应用。提高学生利用统计原理、方法分析和解决实际问题的能力。生物统计学教学中,一方面,教师应该有渊博的统计学知识及其丰富的科研经历,另一方面,应让学生走出教室,加强实践,使学生不但能够掌握统计分析的原理和方法,而且可以解决一些生产中的实际问题,真正达到生物统计学教学的目的。
作者:张以忠邓琳琼工作单位:毕节学院地理与生命科学学院
生物统计学是应用数理统计的原理和方法处理生物学中的各种数量资料,从而透过现象揭示生物学本质的一门科学,是科学研究与实践应用的基础工具。基于生物统计学在生产实践中的广泛应用及在生命科学研究中的重要作用,国内外大多数学校的生命科学各专业都将生物统计学列为专业基础课或必修课。但是,作为2003年才开始招生的新办专业,中国地质大学(武汉)生物科学专业原来的教学计划中没有“生物统计学”的课程,而设置有56学时的“概率论与数理统计”课程。学生们虽然通过“概率论与数理统计”的课程掌握了数理统计的基本原理和分析方法,但却缺乏数据处理与统计分析的必要训练。从而导致生物科学专业2003~2005级学生的毕业论文中缺乏统计分析,在答辩时也没有试验设计与假设检验的概念。鉴于这一实际情况,2007年生物科学专业的教学计划及时作了必要的调整,增开了生物统计学的课程,并且设为专业必修课。按调整后的新教学计划,2009年下学期生物科学专业大三学生在修完56学时的“概率论与数理统计”课程之后,还将学习32学时的“生物统计学”课程(含16学时的上机实习)。
1统计软件R的介绍
相对于其它统计软件,R的主要特色在于:1)R语言具有自由、免费、开放源代码及统计模块齐全的特征;2)R语言是彻底面向对象的统计编程语言,R中所有计算结果都可以作为对象保存起来,供进一步统计分析与图形展示之用;3)R软件体积小,更新速度快;4)R的扩展性非常强。世界各地的CRAN镜像网站上有许多志愿者提供的非常丰富的工具包,供下载使用。正如Google首席经济学家HalVarian所说,R最优美的地方是你能够修改很多前人编写的工具包的代码做各种所需的事情,实际你是站在巨人的肩膀上。
据统计,2008年12月13日~14日“第一届中国R语言会议”在中国人民大学召开时,共有近70家单位150余人参加;2009年12月召开的第二届中国R语言会议则在北京和上海设有两个分会场,共有90多家单位300余人参加。参会的人员主要来自高校和科研机构,包括在校学生、高校老师、科研所研究员等。
2统计教学中R软件的使用现状
3生物统计学教学与R使用的调查分析
问卷调查中发现,有96%的学生认为生物统计学与R语言都非常有用,毕业后无论是继续深造还是参加科研或管理工作都能用得上,同样有96%的学生在生物统计学的课程结束后会选择继续学习R语言,有80%的学生认为R语言上级实习的16学时不够用,且有92.8%的学生认为R软件作为生物统计学的教学软件十分合适,86.7%的学生认为R语言的学习能够对学习与理解统计原理有所帮助,67.6%的学生认为C语言的学习基础对学好R语言有所帮助。江西农业大学生物科学与工程学院程新等主持的教学研究课题“基于自由软件平台的生物统计学实践教学研究”,对两个年级共233人分别采用R和SPSS教学效果的比较分析发现,采用R进行教学,激发了学生的学习积极性,提高了学生掌握统计学知识的能力,教学效果比SPSS有了显著提高[3]。因此,可以认为使用R软件作为生物统计学的教学软件是十分合适的。
4结论
根据调查结果与科研工作的经验,笔者认为统计的思想或意识比统计理论与方法更重要,使用统计软件R进行生物统计学教学,可使学生不再陷入繁琐的统计查表与计算过程中,从而增强统计思想和数据处理能力的培养。
笔者使用R的最大感受是,不断发现其它统计软件很难实现的统计计算和图形展示方法,在R中则很容易实现,惊喜不断。R最重要的一点是怎么都不会高估它,它允许统计学家做很多复杂的分析,而不需要懂得很多的计算机知识(引自Google统计专家DarylPregibon)。R的应用领域是如此之广,R的使用则“无处不在”。