创新音频解决方案:类比半导体的国产中大功率功放技术,具备丰富的算法支持低底噪和低失真特性

类比半导体将持续提供与市面通用产品兼容、软件设计简便、调音友好的功放产品,确保在音箱、电视、投影仪等产品上实现卓越的音频性能。

1、数字功放

表1数字功放

1.1优异的基本指标

相比国际大厂同类功放,类比数字功放Rdson要小几十mΩ,有更大不失真功率和更高的效率(12V,1SPW,>90%)。对于音箱、soundbar产品,常见18V供电、4Ω负载下,1%失真可以达到2*30W的大功率输出,轻松满足常见的2*20W的功率输出要求。对于电视投影仪产品,常见的12V、6Ω负载下,1%失真能够输出2*11W,满足6Ω8W/10W的功率要求。

图1AU681x供电VS功率

得益于精心设计的低导通电阻(Rdson为110mΩ典型值),类比半导体的演示板在12V供电、4Ω负载条件下,采用BD模式并设置768kHz的调制频率进行了一项细致的温升对比测试。

测试结果显示,在2*1W输出功率时,AU6815芯片的温度与市场上的竞争产品相当。然而,随着功率的提升,AU6815的优势逐渐显现。在2*10W输出时,AU6815的芯片表面温度显著低于竞品,分别低了22℃和37.9℃。当输出功率增至2*20W时,竞品芯片因温度过高触发了过温保护(OTP),而AU6815依然稳定运行。这表明,在相同功率条件下,AU6815的温升控制更为出色,从而为客户在设计时对PCB板层数、散热片规格以及铜皮厚度的选择提供了更大的灵活性和便利性。

类比半导体的功放产品采用了先进的闭环架构,这一设计相较于传统开环架构显著降低了底噪(35μVrmstyp)和失真水平(≤0.03%@1k,1W)。得益于此,即便在静音或小信号条件下,输出的声音依然纯净无瑕,信噪比更是高达110dB,确保了卓越的音质体验。

在全音频范围内(20Hz至20kHz),BD模式下的总谐波失真加噪声(THD+N)低于0.15%,这一性能达到了业界领先水平,充分展现了类比功放在音质保真方面的卓越表现。而1SPW模式在20~20kHZ测试下,THD+N也控制在0.3%以内,这一模式在保持高效率和低功耗的同时,依然维持了优异的失真性能,满足了市场对高端音频产品设计的严格要求。

图2AU68x5的THD+N

1.2支持高阶算法

类比半导体的数字功放产品系列集成了先进的DPEQ动态低音增强算法,提供了精细的频率响应调节能力。该算法能够针对用户设定的阈值和特定频段进行动态调整,优化小音量时的低音表现,同时在大音量播放条件下,通过智能控制防止声音失真和破音现象。

具体而言,在低音量播放环境中,DPEQ算法通过设定的低频增强参数,实现了对低频信号的增益提升,增强了音频的深度和力度。而在高音量状态下,算法则自动调整EQ参数,确保输出信号不会超出设备处理能力,从而避免了因音量过大而引起的失真问题。

通过这种动态调整机制,类比半导体的数字功放不仅在小音量下提供了强化的低音体验,而且在大音量播放时也能维持音频信号的完整性和清晰度,满足了音频工程师和音响爱好者对于高保真音质的严格要求。

图3DPEQ算法

1.3创新响应:聆听客户需求,直击客户痛点

在传统功放产品中,缺乏对电源电压(PVDD)的监测和温度感应功能是常见问题。针对这一挑战,类比半导体的功放产品内建了一系列创新功能,以满足市场需求并提升用户体验。

图4CBC限流功能防止OCP断音

图5同步功能准确还原声场

表2模拟功放

2.1优异的基本指标

图6AU3138极低失真率(<0.05%)

2.2闭环架构,Plimit精准

类比半导体的28pin产品系列均支持先进的Plimit功能,这一特性得益于闭环架构的精准设计。类比功放采用的功率限制值计算方法不受电源电压(PVDD)波动的影响,确保了功率限制值(Plimit)的稳定性和精确度。相较于传统的开环架构,闭环架构下的功率限制更为精确,提供了更为可靠的性能保障。

2.3卓越的EMC性能与内置高阶展频技术

电磁兼容性(EMC)是消费电子产品设计中的一个关键挑战,而类比半导体凭借深厚的EMC调试经验,已在这一领域取得显著成就。类比半导体不仅通过精心设计的外部电路来优化EMC性能,还在产品内部集成了高阶展频技术。从设计阶段开始,类比半导体就专注于解决EMC问题,确保产品能够在各种电磁环境下稳定运行。

得益于这种综合方法,即使在采用磁珠方案的情况下,类比半导体的功放产品也能轻松通过EN55013和EN55022等严格的EMC标准测试,展现出类比半导体在电磁兼容性方面的卓越性能和可靠性。

3、总结

类比半导体的功放产品系列在设计上实现了与市面通用产品的BOM兼容性,确保了软件设计的简便性和调音软件的用户友好性。在性能上,类比半导体的产品不仅在基本指标上超越了传统竞争对手,更通过深入洞察客户需求,引入了创新功能,有效解决了客户的痛点。

类比半导体的数字功放产品,凭借其丰富的算法支持、低底噪和低失真特性,完美满足了市场对高品质音频产品设计的需求。与此同时,模拟功放产品则以其卓越的成本效益,满足了客户对成本敏感型应用的需求,尤其适合音箱、电视、投影仪等消费电子产品。

如日中天电子有限公司,开发业界领先的低失真,高音质低通滤波器线圈。工作温度范围:-40℃~+125℃,通过AEC-Q200认证,适用于汽车功放、家庭影院、LED电视盒PDP电视、工业扩音器等。

如日中天电子有限公司,开发了业界领先的低失真,高音质低通滤波器线圈,ZTI99数字功放电感现已上市发售,适用于:汽车功放,家庭影院,有源音箱和工业扩音器。

类比半导体宣布推出重磅新品车规级智能高边驱动HD7xxxQ系列。该系列产品包括车规级单通道高边驱动HD70xxQ和车规级双通道智能高边驱动HD70xx2Q,提供不同通道数和多档导通内阻,产品均具备全方位的保护和诊断功能,包括可配置闭锁功能的过热关断保护、动态过温保护、负载过流保护、高精度比例负载电流检测、输出过载和对地短路警报以及对VCC短路诊断和OFF状态开路诊断等。

描述-拓尔微电子股份有限公司,成立于2007年,是一家专注于模拟和数模混合IC设计的公司。公司拥有500多款产品,涵盖电源管理、马达驱动、锂电管理、模拟芯片、模组等多个领域。公司业务布局广泛,包括个人消费、智能家居、新能源汽车、通信与安防、工业控制等。拓尔微电子致力于提供一流的芯片解决方案和服务,持续为客户创造最大价值。

描述-ShenzhenWaytronicElectronicsCo.,Ltd.(formerlyGuangzhouWeichuangElectronicsCo.,Ltd.)islocatedinBaoanDistrict,Shenzhen,GuangdongProvince.ItwasfoundedinGuangzhouin1999.Withover20yearsofdevelopment,thecompanyhasbecomeanationalhigh-techenterprisethatintegratesresearchanddevelopment,production.

描述-HT326C是一款高效的立体声音频功放,具备2×20W的输出功率,适用于多种音频应用。它采用单电源供电,效率超过90%,并支持免电感滤波技术。该产品具有丰富的保护功能,包括过压、欠压、过热、直流检测和过流保护,同时提供模拟差分/单端输入选项。

型号-HT326C,HT326CSPER

音乐播放芯片是现代电子设备中广泛应用的一种芯片,它可以将数字音频信号转化为模拟音频信号,并通过扬声器或耳机等音频设备发出声音。本王根据不同的应用场景和需求,音乐播放芯片的应用可以分为几个级别去分别介绍。

近日,慕尼黑华南电子展在深圳国际会展中心(宝安)盛大开幕,类比半导体携高边驱动系列以及音频功放等产品精彩亮相此次展会。在2023年11月2日-3日期间举办的IICShenzhen暨2023国际集成电路展览会上,类比半导体再度亮相,并在同期举办的“芯”品发布会上,向数家行业媒体深度解读类比HD7xxx系列高边驱动芯片产品。

电子商城

查看更多

品类:数字功放电感

价格:

现货:0

交期查询根据您的项目以及所需型号、厂牌、数量等信息,世强客服在1个工作日内响应,提供在线回复交期服务。

品类:D类音频功率放大器

品牌:

品类:

现货:

现货市场

暂无此商品

服务

可定制板装式压力传感器支持产品量程从5inch水柱到100psi气压;数字输出压力传感器压力范围0.5~60inH2O,温度补偿范围-20~85oС;模拟和数字低压传感器可以直接与微控制器通信,具备多种小型SIP和DIP封装可选择。

提交需求>

可定制电感最大电流100A,尺寸最小7x7x3.0mm到最大35x34x15.5mm,工作频率100KHZ~2MHZ,感值范围:0.15~100uh;支持大功率电感,扁平线电感,大电流电感,高频电感,汽车电感器,车规电感,一体成型电感等定制。

THE END
1.什么是事件驱动,“实时”有多快?如果将这个场景转换为软件系统,那么你关注的一切都和时间有关:响应时间、完成时间、访问时间、启动时间等。 这些时间由用户或访问应用程序定义。 备注 在实时系统中,各项任务应在规定的期限内执行其功能。 你还应时刻注意系统内的运行状况。 因此,请务必关注显而易见的事项,即所设置时间的日志记录、监视和测量。 https://docs.microsoft.com/zh-cn/training/modules/deploy-real-time-event-driven-app/2-event-driven-example
2.最高响应比的计算方法详解(最高响应比如何计算)问题:最高响应比如何计算 答案: 最高响应比是一种在计算机调度算法中常用的评估指标,尤其在进程调度中,它能够帮助系统更公平、高效地分配资源。以下是最高响应比计算方法的详细解析。 首先,我们需要明确什么是响应比。响应比是衡量进程等待时间与估计的执行时间的比值,通常用来评估进程的优先级。其计算公式为: 响应比https://www.zaixianjisuan.com/jisuanzixun/zuigaoxiangyingbidejisuanfangfaxiangjie.html
3.最高响应比优先算法相对于SJF算法和SRT算法,则更注重等待时间和服务时间之间的平衡,从而避免出现长任务对系统的影响。 4. HRRN的应用场景 HRRN算法适用于各种应用场景,特别是在要求系统响应快速的场合,如操作系统、网络通信、实时控制等领域。在这些场景下,通过使用HRRN算法可以提高系统的响应速度,减少任务的响应时间。http://kaoshi.educity.cn/rk/htjizkfkc8.html
4.智能报警系统:实时预警和快速响应智能报警系统是一种基于大数据、人工智能和计算机科学技术的系统,它的主要目的是实时预警和快速响应。在现代社会,智能报警系统已经广泛应用于各个领域,例如安全监控、交通管理、气候变化监测、金融风险预警等。智能报警系统可以帮助人们更快速地发现问题,并采取措施进行处理,从而提高工作效率和降低风险。 https://blog.csdn.net/universsky2015/article/details/135809157
5.在实时操作系统里面随便怎么写代码都能硬实时吗?众所周知,硬实时的概念,其核心并非追求速度的极致,而是确保系统能在预定的、可重复的时间范围内给予确定的响应。这意味着,实时系统的正确性不仅在于计算逻辑的正确,更在于结果的产生时间是否符合预期。以汽车为例,当发生碰撞时,安全气囊必须在极短的时间内弹开,否则可能无法起到应有的保护作用。 https://cloud.tencent.com/developer/article/2411178
6.实时调度算法:高效应对实时系统的挑战新闻动态最早截止时间优先(Earliest Deadline First,EDF)算法是最常见的实时调度算法之一。它根据任务的截止时间来决定任务的执行顺序,优先选择截止时间最早的未完成任务进行执行。 EDF算法的优点是简单易懂,能够保证系统在任何时刻都能满足所有任务的截止时间要求。然而,EDF算法也存在一些缺点。首先,它可能会导致任务的响应时间较http://xacbs88.com/post/6113.html
7.响应比计算公式计算响应比可以帮助我们评估系统的执行效率,了解任务在系统中的调度情况,以及优化系统性能。 响应比的计算公式如下: 响应比 = (等待时间 + 服务时间)/ 服务时间 其中,等待时间是指一个任务在系统中等待服务的时间,而服务时间是指任务实际获得服务的时间。 为了更好地理解响应比的意义,我们可以通过一个生动的例子来https://wenku.baidu.com/view/5af773017cd5360cba1aa8114431b90d6c858996.html
8.实时调度算法开源通宝实时调度算法 对于什么是实时系统,POSIX 1003.b作了这样的定义:指系统能够在限定的响应时间内提供所需水平的服务。而一个由Donald Gillies提出的更加为大家接受的定义是:一个实时系统是指计算的正确性不仅取决于程序的逻辑正确性,也取决于结果产生的时间,如果系统的时间约束条件得不到满足,将会发生系统出错。http://blog.chinaunix.net/uid-24549279-id-262087.html
9.Java性能权威指南学习笔记临渊羡鱼不如退而结网3.GC算法及响应时间测试 快速小结 1.衡量标准是响应时间或吞吐量,在Throughput收集器和Concurrent收集器之间做选择的依据主要是有多少空闲CPU资源能用于运行后台的并发线程。 2.通常情况下,Throughput收集器的平均响应时间比Concurrent收集器要差,但是在90%响应时间或99%响应时间这几项指标上,Throughput收集器比Concurrenthttps://www.iteye.com/blog/bsr1983-2357030
10.程序员不得不会的计算机科班知识——操作系统篇(上)操作系统是实时操作系统(RTOS)是指当外界事件或数据产生时,能够接受并以足够快的速度予以处理,其处理的结果又能在规定的时间之内来控制生产过程或对处理系统做出快速响应。 调度一切可利用的资源完成实时任务,并控制所有实时任务协调一致运行的操作系统。提供及时响应和高可靠性是其主要特点。 https://article.juejin.cn/post/7221142199391043643
11.liblfzncnn回声消除回声消除的英文NSAF算法 MATLAB代码实现 房间脉冲响应 近端语音信号 远端语音信号 麦克风信号 频域自适应滤波器(FDAF) 回声回波增强(ERLE) 不同步长值的影响 回声回波损耗增强比较 使用分区减少延迟 开源的音频处理库 Speex:开源语音编解码器 Opus互动音频编解码器 WebRTC(实时通信) https://blog.51cto.com/u_16213645/10934104
12.位置式PID算法和增量式PID算法的差异位置式PID算法与增量式PID算法在计算方式、系统响应、控制效果等方面存在明显差异。两种算法各有优势,应根据具体的控制需求选择合适的算法。位置式PID算法适用于快速响应和实时性要求高的系统,而增量式PID算法则更适用于对稳定性和抗干扰能力要求高的系统。https://m.eefocus.com/e/1713067.html
13.流域治理视角下,构建弹性城市排水系统实时控制策略借鉴国外相关经验,按照系统实际控制(管理)的范围,将实时控制系统分成局部响应控制、全局优化控制和流域联合调度三种级别。 ①局部响应控制:定位于单个汇水分区,实现本区域厂-网就地响应控制,只利用本地或相邻传感器的实时监测数据,通过内置的控制算法计算出控制动作,进而通过执行器实现对受控过程的控制。这种控制方式一般适https://www.h2o-china.com/news/313406.html
14.实时算法(精选十篇)文献[7]采用Surfacelet变换和隐马尔科夫树模型(HTM)相结合的方法,考虑时间域和空间域的多种特征,建立烟雾三维的HTM模型,并用SVM进行训练检测,此算法复杂度较高,实时性较差。 LBP纹理特征[8]越来越多地被利用来检测目标。Yuan[9]利用LBP和LBPV检测烟雾,然而这种方法不能很好适应光照变化,并且LBP特征向量长255,计算https://www.360wenmi.com/f/cnkeyip6p1f5.html
15.杭州市总工会借助“数字化”手段,打通医保、卫健大数据,AI算法自动计算补助金额,线上“一站式”解决在职职工医疗互助补助申请、审核发放,实现医疗补助应补尽补。上线8天,已累计办理3886人次,发放补助183.4万余元。 窗口到“指尖”的实时响应 “线上补助太方便了!只要动动手指就可以,没想到速度这么快。”来自北干街道企业女职工https://www.hzgh.org/newsview101503.htm
16.实时算法论文范文9篇(全文)实时预警的架构是将预警系统建立在实时数据库之上, 即对生产过程进行连续监视。因此实时预警涉及生产数据采集方面的压缩和解压缩算法, 数据进入预警引擎之前的、以提高数据有效性为目的的预处理算法, 以及预警引擎中的规则推理算法。限于篇幅, 本文讨论数据预处理过程中的几个典型算法。 https://www.99xueshu.com/w/ikeylbaxbqaw.html
17.虚拟电厂,豹变前夜从市场机制看,我国电力交易市场尚处于试点起,虚拟电厂的运营仍以邀约制下的需求侧响应为主要模式,因此当前情况下更接近于美国模式。欧洲虚拟电厂利用软件算法设定电力现货市场的竞价策略,实现交易收益的最大化。但我国电力市场处于起步阶段,目前仅有广东省对电力现货交易实行了试点,当电力供给出现缺口或存在调峰调频需求时https://wallstreetcn.com/articles/3664491
18.基于文件分时索引的大规模流量实时IoT终端识别算法实验中, 在不损失IoT终端识别算法精度条件下, 仅消耗少量磁盘, 可将内存消耗降低92%. 实验结果表明, 该技术能够用于实时IoT终端识别框架中.关键词: 物联网(IoT) IoT终端识别 异常检测 网络流量 Real-Time IoT Terminal Identification Algorithm for Large-Scale Flow Based on Time-Sharing Index of Fileshttps://c-s-a.org.cn/html/2021/2/7785.html
19.基于五Ⅰ算法的模糊系统的响应能力期刊[6]李洪兴,尤飞,彭家寅,等.基于某些模糊蕴涵算子的模糊控制器及其响应函数[J].自然科学进展.2003,(10).DOI:10.3321/j.issn:1002-008X.2003.10.011. [7]王国俊.模糊推理的全蕴涵三I算法[J].中国科学(E辑).1999,(1).43. [8]潘海玉,裴道武,陈仪香.基于三Ⅰ算法的模糊系统的响应能力[J].控制理论与应用.https://d.wanfangdata.com.cn/periodical/gcsxxb201901002