(网经社讯)委员长、各位副委员长、秘书长、各位委员:
一、计算技术发展简介
计算技术的发展历史大致可分为四个阶段,算盘的出现标志着人类进入第一代——机械计算时代,第二代——电子计算的标志是出现电子器件与电子计算机,互联网的出现使我们进入第三代——网络计算,当前人类社会正在进入第四阶段——智能计算。
早期的计算装置是手动辅助计算装置和半自动计算装置,人类计算工具的历史是从公元1200年的中国算盘开始,随后出现了纳皮尔筹(1612年)和滚轮式加法器(1642年),到1672年第一台自动完成四则运算的计算装置——步进计算器诞生了。
直到在二十世纪上半叶,出现了布尔代数(数学)、图灵机(计算模型)、冯诺依曼体系结构(架构)、晶体管(器件)这四个现代计算技术的科学基础。其中,布尔代数用来描述程序和硬件如CPU的底层逻辑;图灵机是一种通用的计算模型,将复杂任务转化为自动计算、不需人工干预的自动化过程;冯诺依曼体系结构提出了构造计算机的三个基本原则:采用二进制逻辑、程序存储执行、以及计算机由运算器、控制器、存储器、输入设备、输出设备这五个基本单元组成;晶体管是构成基本的逻辑电路和存储电路的半导体器件,是建造现代计算机之塔的“砖块”。基于以上科学基础,计算技术得以高速发展,形成规模庞大的产业。
现代计算技术的发展大致可以划分为三个时代。IT1.0又称电子计算时代(1950-1970),基本特征是以“机”为中心。计算技术的基本架构形成,随着集成电路工艺的进步,基本计算单元的尺度快速微缩,晶体管密度、计算性能和可靠性不断提升,计算机在科学工程计算、企业数据处理中得到了广泛应用。
IT3.0又称智能计算时代,始于2020年,与IT2.0相比增加了“物”的概念,即物理世界的各种端侧设备,被数字化、网络化和智能化,实现“人-机-物”三元融合。智能计算时代,除了互联网以外,还有数据基础设施,支撑各类终端通过端边云实现万物互联,终端、物端、边缘、云都嵌入AI,提供与ChatGPT类似的大模型智能服务,最终实现有计算的地方就有AI智能。智能计算带来了巨量的数据、人工智能算法的突破和对算力的爆发性需求。
二、智能计算发展简介
智能计算包括人工智能技术与它的计算载体,大致历经了四个阶段,分别为通用计算装置、逻辑推理专家系统、深度学习计算系统、大模型计算系统。
智能计算的起点是通用自动计算装置(1946年)。艾伦·图灵(AlanTuring)和冯·诺依曼(JohnvonNeumann)等科学家,一开始都希望能够模拟人脑处理知识的过程,发明像人脑一样思考的机器,虽未能实现,但却解决了计算的自动化问题。通用自动计算装置的出现,也推动了1956年人工智能(AI)概念的诞生,此后所有人工智能技术的发展都是建立在新一代计算设备与更强的计算能力之上的。
符号计算系统的局限性在于其爆炸的计算时空复杂度,即符号计算系统只能解决线性增长问题,对于高维复杂空间问题是无法求解的,从而限制了能够处理问题的大小。同时因为符号计算系统是基于知识规则建立的,我们又无法对所有的常识用穷举法来进行枚举,它的应用范围就受到了很大的限制。随着第二次AI寒冬的到来,第一代智能计算机逐渐退出历史舞台。
大模型的特点是以“大”取胜,其中有三层含义,(1)参数大,GPT-3就有1700亿个参数;(2)训练数据大,ChatGPT大约用了3000亿个单词,570GB训练数据;(3)算力需求大,GPT-3大约用了上万块V100GPU进行训练。为满足大模型对智能算力爆炸式增加的需求,国内外都在大规模建设耗资巨大的新型智算中心,英伟达公司也推出了采用256个H100芯片,150TB海量GPU内存等构成的大模型智能计算系统。
人工智能的技术前沿将朝着以下四个方向发展。第一个前沿方向为多模态大模型。从人类视角出发,人类智能是天然多模态的,人拥有眼、耳、鼻、舌、身、嘴(语言),从AI视角出发,视觉,听觉等也都可以建模为token②的序列,可采取与大语言模型相同的方法进行学习,并进一步与语言中的语义进行对齐,实现多模态对齐的智能能力。
第二个前沿方向为视频生成大模型。OpenAI于2024年2月15日发布文生视频模型SORA,将视频生成时长从几秒钟大幅提升到一分钟,且在分辨率、画面真实度、时序一致性等方面都有显著提升。SORA的最大意义是它具备了世界模型的基本特征,即人类观察世界并进一步预测世界的能力。世界模型是建立在理解世界的基本物理常识(如,水往低处流等)之上,然后观察并预测下一秒将要发生什么事件。虽然SORA要成为世界模型仍然存在很多问题,但可以认为SORA学会了画面想象力和分钟级未来预测能力,这是世界模型的基础特征。
第四个前沿方向是AI4R(AIforResearch)成为科学发现与技术发明的主要范式。当前科学发现主要依赖于实验和人脑智慧,由人类进行大胆猜想、小心求证,信息技术无论是计算和数据,都只是起到一些辅助和验证的作用。相较于人类,人工智能在记忆力、高维复杂、全视野、推理深度、猜想等方面具有较大优势,是否能以AI为主进行一些科学发现和技术发明,大幅提升人类科学发现的效率,比如主动发现物理学规律、预测蛋白质结构、设计高性能芯片、高效合成新药等。因为人工智能大模型具有全量数据,具备上帝视角,通过深度学习的能力,可以比人向前看更多步数,如能实现从推断(inference)到推理(reasoning)的跃升,人工智能模型就有潜力具备爱因斯坦一样的想象力和科学猜想能力,极大提升人类科学发现的效率,打破人类的认知边界。这才是真正的颠覆所在。
最后,通用人工智能③(ArtificialGeneralIntelligence,简称AGI)是一个极具挑战的话题,极具争论性。曾经有一个哲学家和一个神经科学家打赌:25年后(即2023年)科研人员是否能够揭示大脑如何实现意识?当时关于意识有两个流派,一个叫集成信息理论,一个叫全局网络工作空间理论,前者认为意识是由大脑中特定类型神经元连接形成的“结构”,后者指出意识是当信息通过互连网络传播到大脑区域时产生的。2023年,人们通过六个独立实验室进行了对抗性实验,结果与两种理论均不完全匹配,哲学家赢了,神经科学家输了。通过这一场赌约,可以看出人们总是希望人工智能能够了解人类的认知和大脑的奥秘。从物理学的视角看,物理学是对宏观世界有了透彻理解后,从量子物理起步开启了对微观世界的理解。智能世界与物理世界一样,都是具有巨大复杂度的研究对象,AI大模型仍然是通过数据驱动等研究宏观世界的方法,提高机器的智能水平,对智能宏观世界理解并不够,直接到神经系统微观世界寻找答案是困难的。人工智能自诞生以来,一直承载着人类关于智能与意识的种种梦想与幻想,也激励着人们不断探索。
三、人工智能的安全风险
其次,AI大模型面临严重可信问题。这些问题包括:(1)“一本正经胡说八道”的事实性错误;(2)以西方价值观叙事,输出政治偏见和错误言论;(3)易被诱导,输出错误知识和有害内容;(4)数据安全问题加重,大模型成为重要敏感数据的诱捕器,ChatGPT将用户输入纳入训练数据库,用于改善ChatGPT,美方能够利用大模型获得公开渠道覆盖不到的中文语料,掌握我们自己都可能不掌握的“中国知识”。因此,迫切需要发展大模型安全监管技术与自己的可信大模型。
我国应加快推进《人工智能法》出台,构建人工智能治理体系,确保人工智能的发展和应用遵循人类共同价值观,促进人机和谐友好;创造有利于人工智能技术研究、开发、应用的政策环境;建立合理披露机制和审计评估机制,理解人工智能机制原理和决策过程;明确人工智能系统的安全责任和问责机制,可追溯责任主体并补救;推动形成公平合理、开放包容的国际人工智能治理规则。
四、中国智能计算发展困境
困境四为AI应用于行业时成本、门槛居高不下。当前我国AI应用主要集中在互联网行业和一些国防领域。AI技术推广应用于各行各业时,特别是从互联网行业迁移到非互联网行业,需要进行大量的定制工作,迁移难度大,单次使用成本高。最后,我国在AI领域的人才数量与实际需求相比也明显不足。
五、中国如何发展智能计算的道路选择
选择一:统一技术体系走闭源封闭,还是开源开放的道路?
一是追赶兼容美国主导的A体系。我国大多数互联网企业走的是GPGPU/CUDA兼容道路,很多芯片领域的创业企业在生态构建上也是尽量与CUDA兼容,这条道路较为现实。由于在算力方面美国对我国工艺和芯片带宽的限制,在算法方面国内生态林立很难形成统一,生态成熟度严重受限,在数据方面中文高质量数据匮乏,这些因素会使得追赶者与领先者的差距很难缩小,一些时候还会进一步拉大。
三是全球共建开源开放的C体系。用开源打破生态垄断,降低企业拥有核心技术的门槛,让每个企业都能低成本地做自己的芯片,形成智能芯片的汪洋大海,满足无处不在的智能需求。用开放形成统一的技术体系,我国企业与全球化力量联合起来共建基于国际标准的统一智能计算软件栈。形成企业竞争前共享机制,共享高质量数据库,共享开源通用底座大模型。对于全球开源生态,我国企业在互联网时代收益良多,我国更多的是使用者,是参与者,在智能时代我国企业在RISC-V⑥+AI开源技术体系上应更多地成为主力贡献者,成为全球化开放共享的主导力量。
选择二:拼算法模型,还是拼新型基础设施?
人工智能技术要赋能各行各业,具有典型的长尾效应⑦。我国80%的中小微企业,需要的是低门槛、低价格的智能服务。因此,我国智能计算产业必须建立在新的数据空间基础设施之上,其中关键是我国应率先实现智能要素即数据、算力、算法的全面基础设施化。这项工作可比肩二十世纪初美国信息高速公路计划(即信息基础设施建设)对互联网产业的历史作用。
信息社会最核心的生产力是网络空间(Cyberspace)。网络空间的演进过程是:从机器一元连接构成的计算空间,演进到人机信息二元连接构成的信息空间,再演进到人机物数据三元连接构成的数据空间。从数据空间看,人工智能的本质是数据的百炼成钢,大模型就是对互联网全量数据进行深度加工后的产物。在数字化时代,在互联网上传输的是信息流,是算力对数据进行粗加工后的结构化抽象;在智能时代,在互联网上传输的是智能流,是算力对数据进行深度加工与精炼后的模型化抽象。智能计算的一个核心特征就是用数值计算、数据分析、人工智能等算法,在算力池中加工海量数据件,得到智能模型,再嵌入到信息世界、物理世界的各个过程中。
我国政府已经前瞻性地提前布局了新型基础设施,在世界各国竞争中抢占了先机。首先,数据已成为国家战略信息资源。数据具有资源要素与价值加工两重属性,数据的资源要素属性包括生产、获取、传输、汇聚、流通、交易、权属、资产、安全等各个环节,我国应继续加大力度建设国家数据枢纽与数据流通基础设施。
选择三:AI+着重赋能虚拟经济,还是发力实体经济?
“AI+”的成效是人工智能价值的试金石。次贷危机后,美国制造业增加值占GDP的比重从1950年的28%降低为2021年的11%,美国制造业在全行业就业人数占比从1979年的35%降低为2022年的8%,可见美国更倾向于回报率更高的虚拟经济,轻视投资成本高且经济回报率低的实体经济。中国倾向于实体经济与虚拟经济同步发展,更加重视发展装备制造、新能源汽车、光伏发电、锂电池、高铁、5G等实体经济。
相应地美国AI主要应用于虚拟经济和IT基础工具,AI技术也是“脱实向虚”,自2007年以来硅谷不断炒作虚拟现实(VirtualReality,VR)、元宇宙、区块链、Web3.0、深度学习、AI大模型等,是这个趋势的反映。
人工智能技术成功的关键是能否让一个行业或一个产品的成本大幅下降,从而将用户数与产业规模扩大10倍,产生类似于蒸汽机对于纺织业,智能手机对于互联网业的变革效果。
我国应走出适合自己的人工智能赋能实体经济的高质量发展道路。