物联网(TheInternetofThings,简称IOT)是指通过各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实时采集任何需要监控、连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息,通过各类可能的网络接入,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。物联网是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络。
物联网是新一代信息技术的重要组成部分,IT行业又叫:泛互联,意指物物相连,万物万联。由此,“物联网就是物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。因此,物联网的定义是通过射频识别、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现对物品的智能化识别、定位、跟踪、监控和管理的一种网络。
2、物联网的关键技术
(1)射频识别技术
(2)传感网
MEMS是微机电系统(Micro-Electro-MechanicalSystems)的英文缩写。它是由微传感器、微执行器、信号处理和控制电路、通讯接口和电源等部件组成的一体化的微型器件系统。其目标是把信息的获取、处理和执行集成在一起,组成具有多功能的微型系统,集成于大尺寸系统中,从而大幅度地提高系统的自动化、智能化和可靠性水平。它是比较通用的传感器。因为MEMS,赋予了普通物体新的生命,它们有了属于自己的数据传输通路、有了存储功能、操作系统和专门的应用程序,从而形成一个庞大的传感网。这让物联网能够通过物品来实现对人的监控与保护。
(3)M2M系统框架
(4)云计算
云计算旨在通过网络把多个成本相对较低的计算实体整合成一个具有强大计算能力的完美系统,并借助先进的商业模式让终端用户可以得到这些强大计算能力的服务。如果将计算能力比作发电能力,那么从古老的单机发电模式转向现代电厂集中供电的模式,就好比现在大家习惯的单机计算模式转向云计算模式,而“云”就好比发电厂,具有单机所不能比拟的强大计算能力。这意味着计算能力也可以作为一种商品进行流通,就像煤气、水、电一样,取用方便、费用低廉,以至于用户无需自己配备。与电力是通过电网传输不同,计算能力是通过各种有线、无线网络传输的。因此,云计算的一个核心理念就是通过不断提高“云”的处理能力,不断减少用户终端的处理负担,最终使其简化成一个单纯的输入输出设备,并能按需享受“云”强大的计算处理能力。物联网感知层获取大量数据信息,在经过网络层传输以后,放到一个标准平台上,再利用高性能的云计算对其进行处理,赋予这些数据智能,才能最终转换成对终端用户有用的信息。
3、物联网与互联网的关系
4、物联网分层
4.1、物联网的4个分层
物联网可以分为4个层次:感知层、传输层(网络)、支撑层(平台)、应用层。也有另一种常见的分法,是把平台层并入应用层,因此定义为感知、网络和应用层。各层的组成和对应关系如下:
(1)感知层
主要用于采集物理世界中发生的物理事件和数据,包括各类物理量、标识、音频、视频数据。物联网的数据采集涉及传感器、RFID、多媒体信息采集、二维码和实时定位等技术。如温度感应器、声音感应器、图像采集卡、震动感应器、压力感应器、RFID读写器、二维码识读器等,都是用于完成物联网应用的数据采集和设备控制。
感知层通常由终端设备来履行,像人的终端神经一样,使智能网络和中控系统能感知未端状态,并执行下达的指令;其中不具备独立寻址的传感器一种是通过网关接入物联网,或者是与有独立寻址和连接能力的设备相连,通常视为该设备的一部分,以外设的身份存在。
(2)传输层
传输层主要功能是直接通过现有互联网(IPv4/IPv6网络)、移动通信网(如:GSM、TD-SCDMA、WCDMA、CDMA、无线接入网、无线局域网等)、卫星通信网等基础网络设施,对来自感知层的信息进行接入和传输。网络层主要利用了现有的各种网络通信技术,实现对信息的传输功能。
(3)支撑层
支撑层主要是在高性能网络计算环境下,将网络内大量或海量信息资源通过计算整合成一个可互联互通的大型智能网络,为上层的服务管理和大规模行业应用建立一个高效、可靠和可信的网络计算超级平台。支撑层利用了各种智能处理技术、高性能分布式并行计算技术、海量存储与数据挖掘技术、数据管理与控制等多种现代计算机技术。
(4)应用层
4.2、4个层次的作用
物联网技术的四个层次:感知技术、传输技术、支撑技术、应用技术
(1)感知技术
能够用于物联网底层感知信息的技术。它包括射频识别(RFID)技术、传感器技术、GPS定位技术、多媒体信息采集技术及二维码技术等。
(2)传输技术
能够汇聚感知数据,并实现物联网数据传输的技术,它包括互联网、移动通信网、无线网络、卫星通信、短距离无线通信等。
(3)支撑技术
(4)应用技术
用于直接支持物联网应用系统运行的技术
5、物联网主要的连接技术
网络层分成两种,一种是网关与传感器之间的联接,称之为局域网联接,有对应的协议;一种是直接接入,并与数据中心或云平台的中控平台连接,这是广域网联接。目前广域网也有多种接入技术,但不管哪种接入技术,都需要通过标准的传输协议,才能建立起对话。主流的MQTT是由IBM公司开发的,基于TCP/IP协议之上。
可以看到,主要的局域网接入和广域网接入技术在速率、功耗等不同指标中各有优劣点:
低速率广域协议将连接更多设备:大量低频、流量吞吐要求小的场景,未来将大规模对低速率广域互联网存在需求,除了Zigbee等之外,我国主推的NB-IoT也是前景可期。
6、物联网应用的主要特点
互联网是连接计算机和移动智能终端的网络,基本上是围绕着人主动触发的场景展开应用。而物联网是物物之间的互联,更多是基于物品对本身或周围环境的感知而触发的自动化应用场景,两者之间的关系对比如下:
总体来说,基于AI,IoT技术的快速发展,未来的电气设备,将沿着越来越自动化智能化,无人干预的方向发展,也就是达到最终的无感智能的状态,以下是在不同的阶段,几个常见操作的对比:
比如第一项的环境调节,以空调为例,在人工操作参考的第一阶段,通常是设备附带的温度计,告知你的环境温度,你可以进行特定温度的设定,这时候压缩机会根据情况开启,比如已经到达设定温度就休眠,等有偏差再工作;在第二阶段,你可以通过手机或电脑,来设定前半夜后半夜和清晨的不同时段温度的要求,然后中控系统按计划向空调发实时指令;到了无感智能阶段,空调是根据你穿戴设备把你的体温、心跳等信息传给中控,它再结合环境温度,算出一个智能的指令,让空调在人不用干预的情况下,一直保持最适宜的环境温度。
未来的IoT应用,将在不同行业中,和不同领域中,从简单的状态检测和自动化,向高阶的综合调度和智能化决策等方向沿进:
●首先从公共设施领域,再到商用领域最后在个人领域(高频高复杂度)应用●从遥测遥感遥控,再到自动调节,最终到智能调节●同时向单品智能和整体解决方案智能进行发展演进