6万字长文剖析宁德时代(一):核心技术电池电解液锂离子电芯

用途:用于同时解决电池的穿钉和过充问题。

核心技术说明:该技术能够使动力电池在过充和穿钉滥用下分别形成独立的保护回路,对动力电池进行有效的保护,确保在不同的意外情况下各安全部件发挥其作用。

单体电芯导电片

用途:用于解决电池的过充问题。

核心技术说明:该技术所提供的动力电池能够有效防止导电片在使用过程中发生断裂、失效或者变形;提升电池安全性能;在确保电池安全的前提下,将导电片设计在顶盖上进一步减少占用额外的电池空间,提高电池能量密度。

铜铝复合极柱

用途:用于对负极柱进行铜铝转换,使得铝巴能够与负极柱激光焊接。

核心技术说明:该技术所提供的动力电池顶盖结构能够对负极柱进行铜铝转换,并且能够有效避免极柱上段与极柱下段的结合面开裂甚至断开,保证电池之间连接的一致性、可靠性。

极片辊压拉伸技术

用途:用于对极片进行辊压拉伸,提高极片延展均匀性。

核心技术说明:本技术能有效地降低甚至消除带材的打皱,提高带材的平整性;提高极片压实密度。

极片隔膜高速卷绕技术

用途:实现极片隔膜高速卷绕,降低成本。

核心技术说明:该技术提供了一种卷制品加工装置,该加工装置包括卷针和整形机构,整形机构包括活动部、第一作用部和第二作用部,卷针的外表面上开设有容纳槽;公司通过改善卷针及相应机械构件,在提高卷绕速度的同时,也实现了隔膜张力的良好控制。

三元体系低阻抗产品的电解液技术

用途:用于三元体系产品。

核心技术说明:该技术提供了一种可以用于三元体系产品的电解液配方,可以在阳极和阴极均形成有效的界面膜,从而使电池具有良好的存储寿命,并同时降低电池阻抗。

三元体系抑制产气的电解液技术

核心技术说明:该技术提供了一种可以用于三元体系产品的电解液配方,可以使得应用该配方的电池体系产气明显得到改善,且具有较高的容量保持率以及良好的低温功率性能。

一种改性的负极活性材料技术

用途:用于三元体系产品或磷酸铁锂体系产品。

核心技术说明:该技术提供了一种改性的负极活性材料,与传统技术相比,较好地改善了电池的动力学性能、存储性能和循环寿命。

电池组热管理技术

用途:用于对电池组进行加热或冷却。

核心技术说明:使用该技术的电池组热管理组件能有效提高对电池组的冷却效率,保证电池温度的一致性等;公司通过设置热管理组件提高冷却效率并实现加热。

电池模组的框架结构

用途:用于容纳和固定多个单体电池,并吸收电池膨胀力。

核心技术说明:使用该技术的电池模组采用具有多个栅格的下壳体和设有导电连接体和安全阀的上盖,使得电芯之间的空间得到充分利用,提高了生产效率;公司通过简化模组结构提高空间利用率。

模组Pack一体化技术

用途:用于简化电池箱结构,提高能量密度,降低成本。

核心技术说明:该技术可使电池箱体与排布于其内部的电芯通过结构胶粘接,结构胶能够起到固定电芯的作用。

全自动激光焊接机技术

用途:提高电池生产中焊接工艺的优率和效率。

核心技术说明:该技术有效降低焊接温度,保证焊接过程的稳定性,提高焊接优率与效率;通过改善激光输出一致性和各机构的联动控制,提高焊接优率。

电池模组的组装工艺技术

用途:用于电池模组的快速组装,提高电池模组的安全性和可靠性。

核心技术说明:该技术可以提高电池模组的抗振稳定性和电连接性,可使电池的热量快速散发,从而提高电池模组的安全性和可靠性。

动力电池组的剩余容量的计算方法

用途:准确计算电池组剩余容量。

核心技术说明:该方法通过引入充电修正系数和放电修正系数,降低动力电池组的剩余容量的计算中的误差。

项目研发体系及流程

宁德时代通过开展材料研发、工艺研发、结构研发、BMS研发、设备研发、轻量化研发等工作提升不同终端应用领域的性能。以“材料—电芯—工艺设计—设备研发升级—结构优化与重塑—模组工艺提升与结构优化”等为轴心,针对不同的应用终端,针对性地开发锂电池,并结合电池发展技术趋势开发下一代电池。锂电池具体包括新能源乘用车用动力电池、新能源商用车用动力电池、储能锂电池,下一代电池包括全固态锂电池、锂金属空气电池、氢燃料电池等。

乘用车用动力电池

新能源乘用车用动力电池主要有三个子研发方向,分别是纯电动乘用车用动力电池、混合动力乘用车用动力电池、启停电源。纯电动乘用车用动力电池的研发任务主要有高能量密度研发、高安全研发、降低成本研发、快充性能研发;插电式混合动力乘用车用动力电池的研发任务主要有高功率性能研发、高安全性能研发、降低成本研发等。启停电源的主要研发任务是瞬间高倍率性能研发、降低成本研发等。

商用车用动力电池

新能源商用车用动力电池主要有三个子研发方向,分别是纯电动客车用动力电池、混合动力客车用动力电池、纯电动物流车用动力电池。纯电动客车用动力电池的研发任务主要有高安全研发、大容量高能量密度电芯研发、降低成本研发;插电式混合动力客车用动力电池的研发任务有高功率性能研发、高安全性能研发、降低成本研发等。纯电动物流车用动力电池的主要研发任务是降低成本研发、长循环寿命研发等。

储能锂电池

储能锂电池的研发任务包括长循环寿命和长日历寿命研发、降低成本研发、锂离子电池梯次利用研发等。

下一代电池

目前下一代电池还无法商业化,主要制约因素包括原材料不稳定、技术未突破等方面,项目将主要就下一代电池的各个技术瓶颈和关键环节进行投入,力争取得技术突破,并在未来进入下一代电池的系统研发,以促进下一代电池的商业化。

研发项目的主要业务流程如下:

公司项目决策委员会对所有立项议题进行决策评审与审批,立项审批通过的项目,下达《项目任务书》,明确研发产品性能参数、关键开发周期、所需预算与人力等。

项目完成时,项目团队根据结项要求对项目的有形资产和无形资产进行清算,项目经理对项目进行综合评估并向公司进行总结报告,例如评估项目完成情况、项目质量、投入产出分析、项目的市场价值、项目的贡献等。

CTP技术

2019年9月宁德时代在法兰克福车展中首次发布CTP技术。宁德时代称,由于省去了电池模组组装环节,较传统电池包,CTP电池包体积利用率提高了15%~20%,电池包零部件数量减少40%,生产效率提升了50%,将大幅降低动力电池的制造成本。同时,得益于内部结构的化繁为简,CTP电池包能量密度较传统电池包将提升了10%~15%。传统的电池包能量密度平均为180Wh/kg,而CTP电池包能量密度可达到200Wh/kg以上。

根据宁德时代的专利资料(申请号:20161036552.0),在电芯设计层面,有以下几个结构特点:

1)箱体由塑料筑成,箱体上侧敞开,且有收容多个电芯的收容空间;

2)具备多个散热板,设置于每两个电芯之间,散热板内部有沿宽度方向的散热通道,并且贯穿箱体的两个侧壁,与外界相连通;

3)多个单体电芯直接布置于箱体,无需先将多个单体电芯组装成模组形式;

4)在箱体外侧还设有风机,风机直接向散热板的散热通道内吹风,另一方面散热通道直接与外部的冷却液管路连通。

电池包结构设计层面。参考宁德时代的专利资料(申请号201620149208.4),该设计方案的关键点在于:

1)电芯单元设有电芯壳体,1个或者多个串联单体电芯内置于上下壳体中,在单体电芯、电芯壳体之间和侧壁设有压力传感器和温度传感器,便于监控电芯过热膨胀发生相互挤压;

2)BMS元器件密封于保护外壳中,单独加强电芯与BMS组件的防护等级,降低电池包箱体的防护等级,加速箱体内空气与外界的流通速率,在保护壳体内设有导热胶,便于及时散热;

3)电芯与BMS组件通过伸出的导电结构相连接。

传统电池模组散热较差,是影响电池包安全性和循环寿命的原因之一。传统电池模组结构是将单体电池大面相互贴合,采用焊接侧板和端板的方式,将单体电芯固定成电池模组,再将电池模组整体置于箱体中,利用箱体的侧面与单体电芯的底面接触导热,再在箱体侧面安装散热风道,对风道进行散热。在散热方面存在以下几个方面的问题:

1)散热效率低:电芯大面积被挤压,热量在电芯之间传递,缩短了电芯的寿命,大面热量无法传导,仅仅通过电池壳体底部接触进行热量传递,底部散热分布少,散热效率低;

3)单体电芯贴合紧密影响寿命:单体电芯相互之间精密贴合,无预留空间,一旦发生紧急情况电芯出现膨胀,会相互挤压,影响使用寿命;

4)冷却效率低、冷却方式受限:只能对箱体外围进行风冷散热,风无法吹进单体电池内部,更无法采用水冷方式,散热方式单一,无法应对后续大功率单体电池散热需求;

5)箱体采用压铸件、降低电池包能量密度:箱体无法采用轻量化材料,由于箱体需要与电芯接触导热,要采用压铸件,无法采用导热较差的塑胶箱体结构。

CTP无模组化方案具备比较优势。

1)简化了电池包的组装工艺,降低了生产成本;

2)箱体由塑料单独浇筑成型,有利于电池包的轻量化设计,提高能量密度;

3)散热板设置在相邻的两个单体电芯之间,避免了电芯发热膨胀相互挤压,同时避免热量相互传递,提高单体电芯寿命;

4)散热板直接与单体电芯的大面积接触,提高导热效率;

5)传统电池包只能小面积方向上风冷,CTP技术实现了风冷与水冷相结合,提高散热效率。

超级快充技术

2018年在宁德电动汽车大功率充电试点专题研讨会,宁德时代展示了采用“超级铁锂+高能量密度快充石墨”体系的EnerSpeedy超级铁锂电池的充电过程。该产品是60Ah的超级铁锂电池,可进行5C充电,演示过程用时7分12秒,就完成了20%至80%的充电,而20%到100%充电,仅耗时13分8秒。18年宁德时代发布的超级铁锂电池,5C速能型产品在70Wh/kg以上,3C高能型产品在115Wh/kg以上,而当时市场上常见的快充电池系统能量密度在40~60wh/kg。

19年法兰克福车展上又再次介绍超级快充电池,快充电池可在15分钟内可将电池荷电状态(SOC)从8%增加到80%。如果使用宁德时代研发的涡轮充电解决方案,9分钟内可充满至80%。

锂电池充电初期会有一个小电流的预充过程,即CCPre-charge,目的是为了让正负极材料稳定下来。此后,电池状态稳定后可以调整为大电流充电,即CCFastCharge。最后,进入恒压充电模式(CV)。对于锂电池来说,系统检测到电压达到4.2V后就开始了恒压充电模式,充电电流逐步减少,小于一定值后充电结束。

普通化学体系的电池在快充时,负极会产生副产物(如晶枝等),从而影响电芯的循环性、稳定性和安全性,只能采用可承受快充大电流的负极材料。

理论上来说正极材料的选择,无论是三元还是磷酸铁锂,都不会影响负极快充的性能发挥,以及可靠性。但由于锂电池是一个系统性的产品,在实际使用过程中正极材料会从其他方面影响快充电池。在很多人的认知中,磷酸铁锂并不适合做快充的正极材料,这个结论并未有误。但磷酸铁锂不适合做快充正极材料的原因不在于磷酸铁锂影响了负极的快充性能,而在于传统的磷酸铁锂材料的导电性能较差,在快充过程中发热较为严重,温度升高会带来一系列的副反应,如电解液加热分解、产气等问题,从而影响电池整体的安全性。

除锂电池正负极材料外,电池制作工艺参数的变化也直接影响锂离子电池快充性能的发挥。

1)浆料

对于浆料的性质,一方面是要保持导电剂的均匀分散。因为导电剂在活性物质颗粒之间分布均匀,在活性物质之间、活性物质与集流体之间可形成较均匀的导电网络,具有收集微电流的作用,降低接触电阻,可以提高电子的移动速率。另一方面是防止导电剂的过分散。在充放电过程中,正负极材料晶体结构会发生变化,可能造成导电剂的剥离脱落,使电池内阻升高,影响性能。

2)极片面密度

理论上来讲,倍率型电池与高容量电池不可兼得。正负极极片面密度较低时,可以增大锂离子的扩散速度,降低离子和电子迁移阻力。面密度越低,极片越薄,在充放电中锂离子不断的嵌入与脱出对极片结构造成的变化也越小。但是面密度过低的话,就会降低电池能量密度,成本升高,所以需要对面密度综合考虑。

通过钴酸锂6C充电1C放电的循环图,易知电池在高面密度的情况下进行快充会导致多次循环之后放电比容量下降,容量保持率下降的情况,缩短电池的使用寿命。

3)极片涂布一致性

影响快充性能的主要是负极极片的一致性情况。当负极面密度不一致,经过辊压之后,活物质的内部孔隙率就会存在较大差异。孔隙率的差异会引起内部电流分布的差异,在电池化成阶段影响SEI的形成及性能,最终影响电池快充性能。

4)极片压实密度

极片压实一方面可提高电池比能量,另一方面可提高电池性能。电极材料不同,最佳压实密度也不同。提高压实密度,电极极片的孔隙率越小,颗粒之间连接的越紧密,相同的面密度下极片的厚度越小,因此可减小锂离子的迁移路径。当压实密度过大时,电解液浸润效果不好,可能会破坏材料结构和导电剂分布,后期会出现卷绕问题。

如图易知,压实密度较低时,快充模式下的循环相同次数后的放电比容量下降较快,容量保持率较差。较高的能量密度并未带来较好的能量保持率,相较之下较为合理的3.32压实密度处于最优的放电比容量状态。

5)化成老化

对碳负极电池来讲,化成-老化是锂电池的关键工艺,此过程会影响SEI的质量。SEI厚度不均匀或结构不稳定,会影响电池快充能力和循环寿命。

宁德时代针对快充电池的解决方案

锂电池快充性能的实现需要解决两个问题:

1)锂电池在快充过程中的发热问题。

2)如何加速锂离子在正负极间移动的速度,减少或者阻断负极副产物的产生。

以石墨作为负极主材,创新性运用孔道优化和“快离子环”技术,在石墨表面打造一圈高速通道,使锂离子能快速嵌入石墨的任何位置,大大提高锂离子在石墨负极的嵌入速度,并且,修饰后的石墨兼顾超级快充和高能量密度的特性,不会在快充时在负极会出现副产物,影响电芯的循环和稳定性。

正极方面,开发了“超电子网”技术修饰正极材料,结合正负极极片的晶体取向和容量过量系数等设计参数调配,优化电解液、正负极的动力学性能,使化学体系和电池设计参数达到最优匹配。

在机械件设计方面,创造性地对电池单体顶盖进行简化设计,将电极端子设置到顶盖板侧面并减小端子厚度,显著降低内阻,有效控制快充发热量,保证快充可靠性的同时提高5%以上能量密度。

同时在BMS开发专门的系统用于识别化学体系在不同温度和SOC状态下的“健康充电区间”,在“健康充电区间”范围内进行快充,在实现快速充电同时,避免电池因快充而受到损害,做到快充、长循环和安全可靠性兼顾。

根据宁德时代在新闻媒体中的介绍,截至19年7月,搭载快充石墨为负极主材的超级铁锂快充电池的新能源电动大巴已经超过5000台,并且运行状态良好,该电池也被交通部评为“新能源公交最佳口碑电池”。

超长寿命电池

19年宁德时代在法兰克福车展上公布了其6年60万公里的长寿命电池。2020年6月宁德时代接受采访时透露,宁德时代将发布循环充电总续航(总里程)可达200万公里、寿命达16年的电池,售价高于普通新能源电池的10%左右,并且该电池的供货不限于特斯拉,可接受其他车企订单并进行生产。

据彭博社的统计,目前市面上大部分电动车,其电池的官方保证的总里程数约为25万公里、寿命为8年。对于电动车头部企业说,电池总里程相对高于该水平。根据特斯拉的资料显示,目前已经出厂的model3,电池最低使用寿命为1500次充电循环,可以保证它行驶48万~80万公里。从比亚迪的资料显示,其最新研发的刀片电池的理论数据是充放电3000次以上,行驶120万公里。

按照行业内统计的一般家庭乘用车平均每年2公里的的使用里程数计算,15年左右的报废年限计算,宁德时代的电池基本可以覆盖普通家庭的乘用车的全生命周期,使得乘用车无需在使用年限内更换电池包,提升新能源乘用车的残值率,提升用户新能源汽车的购买意愿。对于用于运营的乘用车更是利好的消息,按照一般出租车的行驶里程测算,出租车每年的行驶公里数在20万公里以上,用于运营的小型乘用车在2~3年内需要更换新的电池包,采用宁德时代的电池包技术后,运营用小型乘用车的电池包更换周期至少可延长至6~7年。

对于目前公布的消息中,尚有大量细节还未公开。如正极材料的体系,能量密度参数,是否支持快充等一系列问题。在此我们可以做一个大胆的猜测,该款电池应该是采用磷酸铁锂作为正极材料,搭载CTP技术后电池包系统能量密度在120~130wh/kg左右。理由在于16年的使用寿命,产品的有效循环次数对于宁德时代公布的该技术,行业的专家对于该技术的评价褒贬不一,部分专家对于该技术寄予厚望,部分专家认为该公告纯属噱头。

从电池原理的角度,我们猜测可能会使用到的技术方案:

1)正极单晶材料,单晶材料显著区别于二次球材料,具有更高的结构稳定性,更低的比表面积,更少的表面缺陷和更高的真密度等诸多优点。对单晶材料进行掺杂包覆等一定的优化后,使用单晶材料在提高电压的同时依然可以保证材料的循环性能,可兼顾电芯的能量密度和循环寿命。

2)负极表面修饰,使用带有“自修复”负极材料,新的负极材料可以自动修复使用过产生的少量SEI膜缺陷。以及负极材料的预补锂技术的应用。

3)解液的匹配开发,在电解液中加入特殊的正极成膜添加剂;优化了电解液的溶剂种类及比例,从而获得更稳定的固液相界面,更高效的离子传输,更宽的温度响应区间等优异特性;电芯表现出优异的高温长循环性能和低温放电、功率性能。

BMS技术

电芯自加热

电池预热一方面要求电池组预热精准,即要消除低温引起的负面效应,又要让电池尽快从低温回暖到25~35度的“舒适温度”。另一方面要精确掌握电池组内部或外部产热过程,减少预热时热量损失,能充分节能,降低能耗。

最常见的是通过连接充电桩或使用电池内部电量,利用加热装置给电池冷却液加热,进而流经电池内部液体管路,通过类似“隔水炖”方式对电池进行保温或加热。

其中针对三元和磷酸铁锂电池的加热方式有差别。据高工锂电发布,三元电池抗低温性好,能量密度高,一般是采用BMS热管理,进行冷却液循环加热。

磷酸铁锂电池,其能量密度不高,抗低温性差,对热的敏感性差,一般采用没有冷却液的高压PTC加热,降低成本。(PTC发热体又叫PTC加热器,采用PTC陶瓷发热元件与铝管组成。该类型PTC发热体有热阻小、换热效率高的优点,是一种自动恒温、省电的电加热器。突出特点在于安全性能上,任何应用情况下均不会产生如电热管类加热器的表面“发红”现象,从而引起烫伤,火灾等安全隐患。)

特斯拉:循环加热

特斯拉针对动力电池低温,其Model3设计思路是利用电驱系统的废热,类似传统燃油车用发动机余热给乘员舱供暖的原理,使其即用于车辆驱动,又用于产生额外的热量加热电池。采用的方案是在电动车上添加一个类似电热丝作用的零件。

加热模式下,电池内部的低温冷却液进入驱动系统进行热交换,变成高温冷却液,穿过水泵及冷却设备后(此时冷却设备不工作),进入电池包对电池进行加热。

一般而言,电机驱动效率基本在90%以上,产生的10%热量并不足以用来为座舱和电池进行加热。然而特斯拉的电机控制软件,能降低电机效率,以产生更多的热量来给电池加热。

同时电机驱动功率可根据驾驶员需求实时变化,发热功率也能根据座舱,空调,电池温度实时调整。

特斯拉加热技术的益处。

1)充分利用电机余热,能量利用率高。在低温环境下充电可提前对电池进行预热,使电池获得最大的充电功率。

低温速热

宁德时代针对电池低温问题采用了与特斯拉不同的技术路线,解决上主要从BMS电池热管理系统角度出发,利用电池低温状态下未能放出的能量进行加热。通过BMS电池管理系统识别电池状态,拟定速热控制策略,能够使电池温度在15分钟内从-20℃提升到10℃,充电能力提高5倍,放电能力提高7倍,延长电池寿命。电池快充时,BMS软件系统检测电池充电状态,利用充电时电池产生的温度帮助电池回温。在常温或夏季状态下,电池回温功能会自动停止。同时在最新一代能量型电池包中使用了加热膜,在-20℃环境下,电池容量保持率仍可高达90%。目前在实验测试条件下可以达到2℃/分的加热速率,并且在整个加热过程中,电芯温度差不超过4℃。

无线BMS

诊断功能的充电站

电芯的残值评估对于新能源电动车主来说是非常想了解的重要信息。对此,宁德时代开发了电芯诊断算法,当新能源汽车与带有宁德时代电芯诊断功能的充电站相互连接时,BMS便会通过该充电站完成电芯的检测,向用户呈现一个完整详细的电芯检测报告。该技术在汽车保险、二手车市场、汽车年检等方面会有极大应用空间。

V2G

新能源汽车大规模推广后,无序充电将会对电网造成巨大冲击。宁德时代通过V2G技术可实现车网互动,电动汽车成为分布式移动式储能,不但可以避免冲击,还可以实现电网的削峰填谷。

V2G即VehicletoGrid,中有一个典型的盈利模式是峰谷套利,即谷价时充电,峰价时向电网“卖电”,从而实现峰谷套利。此外,通过连接V2G装置,用户可以响应电网的旋转备用、调频等需求,在完成这些V2G响应任务后,由电网支付差价给电动车车主。V2G技术中长寿命电芯以及V2G装置是比较核心的两个技术点,宁德时代开发的长寿命电芯,完全可以满足V2G工况的使用需求。同时我们也开发了V2G装置,在不改电动车硬件结构的基础上,为电动车赋予了V2G功能。

安全核心算法

基于对电化学机理的深度了解,宁德时代研发出不同的电池模型:老化模型/OCV模型/内阻模型/Crack模型/滞后模型等,去计算SOC(荷电状态)/SOH(电池健康状态)/SOP(功率承受能力)/SOE(电池剩余电量)/Balance,满足对电芯/模组/pack/整车不同层级的验证。数以万计的工况测试验证:四季测试/标准工况测试/客户工况测试/宁德时代基于工况数据进行内部研发工况测试;在多种SOC范围内进行验证;不同车型上验证(BEV/PHEV/HEV)

原理:通过电池模型进行在线的实时预估,通过预估与实测的差值反修正参数,再结合多种修正算法进行参数在线更新,形成自修正闭环控制算法,可以将误差降低至极小的可接受范围内,从而实现安全核心算法。

平台化

宁德时代进行平台化开发,主要平台分为Car平台和Bus平台。通过平台化开发,对所有的内外部需求进行了有效的管理和跟踪,大幅提高了软硬件开发质量,同时可以大大的缩短开发周期。做到了“OneSoftwarePlatform,DifferentSystemDerivates”.

新体系电池

锂空气电池(燃料电池)

根据宁德时代专利CN110661062A的资料,其专利设计思路是,通过将难以发生的一步反应(金属-空气电池反应,Li+O2=Li2O)转换为两步相对更容易的反应(金属-水反应和燃料电池反应,如Li+H2O=LiOH+1/2H2和1/2O2+H2=H2O),重新设计了一种金属-水-空气电池,可以有效克服传统金属-空气电池的所有缺陷,实现电池的高效和高能量密度。

放电时,第一管道24上的第一调节阀242处于打开状态,旁路管线25上的第二调节阀252处于关闭状态,金属负极(金属锂负极)16被氧化,失去电子,电子通过外电路流向水电极18,由于失去电子的金属(锂)中会有金属离子(锂离子)析出,析出的金属离子(锂离子)通过隔膜10到达水电极18与水发生反应生成相应的产物(如金属氢氧化物);与此同时水分子(氢离子)可以通过水电极18获得电子生成氢气,金属(锂)与水反应的同时对外输出电能。反应生成的氢气通过第一管道24进入到储氢器20内部,储氢器20内部的氢气可以通过第二管道26供给给燃料电池(氢氧燃料电池)22,与氧气发生反应,同时输出电能并生成水,生成的水可以通过管路再次供给水电极18使其继续发生反应。

充电时,第一管道24上的第一调节阀242处于关闭状态,旁路管线25上的第二调节阀252处于打开状态,给燃料电池(氢氧燃料电池)22输入水并通电(发生电解水过程),就可以再生成氢气和氧气,生成的氢气经过储氢器20之后供给给水电极18,给金属负极(金属锂负极)16和水电极18通电,氢气就可以在水电极18上释放电子生成氢离子,氢离子与金属氢氧化物(氢氧化锂)反应生成水和金属离子(锂离子),金属离子(锂离子)通过固态电解质隔膜10到达金属负极(金属锂负极)16获得电子并生成金属单质(锂),从而完成充电反应。

整个反应的后半程相当于是使氢气代替现有技术中的金属与氧气直接反应,从而反应活性更高,更容易进行,完全避免了现有空气电极的堵塞问题,同时可以利用现有技术中的成熟的燃料电池来实现反应,更加实用。

宁德时代专利所具有的有益效果:

能量密度高、续航里程长,可以媲美燃油系统;可以通过更换金属的方式实现快速能量补给;存储、运输和补给方便,反应充分,极化过电位低,无副产物堵塞电极,可逆性更好;无需使用大容量的储氢系统,安全性能高;无需配备加氢站的基础设施,便于推广应用。

钠离子电池

钠离子电池与锂离子电池的问世几乎同步,都出现在20世纪80年代,随着索尼公司在90年代推出的商用版的锂离子电池,使得锂离子电池逐渐成为高性能化学电池的代表。近年来由于市场对储能系统(EES)的需求大幅增加,包括基站、风力发电储能、电网储能以及低速电动车领域的铅酸电池换代,这些都为钠离子电池提供了丰富的应用场景,钠离子电池也得以快速发展。

钠离子电池的工作原理于锂离子电池的工作原理基本一致,都属于”摇椅”可充电电池,工作过程中,钠离子穿过隔膜在正负极之间来回移动,电子在外电路中移动形成电路。区别于移动设备电源(~4Wh)和动力电池(~40KWh),ESS用于智能电网需要达到MWh的储能规模,因此电池的价格和安全性是首要考虑的。作为储能电池需要具备哪些特性:

1)储能电池作为电站的储能设备时,应具有大能量密度和低自放电(调节昼夜峰谷电);

3)电池的电化学性能稳定,电池需要尽可能不受环境温度的影响;

4)回收成本低,在产品废弃时不产生大量的额外费用。

考虑用于ESS的储能体系有铅酸电池,锂离子电池和钠离子电池;铅酸电池成本低,但能量密度较低制约应用;锂离子电池能量密度高,但地球的锂储量不足和成本偏高,必须有相应的锂资源回收利用系统支持。钠离子电池中的钠储量丰富价格低廉,原料易得。

钠离子作为储能类电池的优势:

当钠离子电池进行充放电时,碱金属或碱土金属阳离子从PBA三维骨架结构中脱出、嵌入,在此过程中,PBA的三维骨架结构必须保持稳定,钠离子电池才有稳定的循环寿命。但碱金属或碱土金属阳离子在嵌入、脱出过程中不可避免的会引起PBA晶格常数的微小变化,尤其是当PBA中有两个过渡金属同时变价时晶格常数变化更大。此外,当PBA结构中空穴较多时,碱金属或碱土金属阳离子在嵌入、脱出过程中会与空穴中的水分发生强烈的相互作用,导致M-C≡N-M′结构的破坏,进而导致PBA三维骨架结构的塌陷。所以,空穴较多且具有两个过渡金属同时变价时的PBA材料往往循环稳定性较差,导致钠离子电池的循环寿命较短。

宁德时代专利使用的正极活性材料为Na1.85Mn[Fe(CN)6]0.96(b-H2O)0.24□0.04(i-H2O)1.61,负极材料采用硬碳,电解液采用六氟磷酸钠。并在电解液加入添加剂,使得在钠离子电池充放电过程中该阳离子会优先嵌入、脱出普鲁士蓝类材料中,由于该阳离子具有较小的电荷/半径比,所以其在嵌入、脱出过程中对普鲁士蓝类材料的结构破坏较小,从而可以稳定普鲁士蓝类材料的三维骨架结构,使钠离子电池具有良好的循环性能。

由于新市场前景的应用,使得室温钠离子电池又一次进入大众的视野。国内专注研究钠离子电池研发和制造企业并不多,目前市面上较为有名的钠离子研究企业使中科海纳。目前,中科海钠已经建成了钠离子电池正负极材料百吨级中试线及兆瓦时级电芯线,在关键材料方面已获得国内外专利近三十个,并完成了全球首辆钠离子电池低速电动车示范和首座100kW·h钠离子电池储能电站示范。

中科院物理所和中科海钠的研发团队自主研发了高温裂解无烟煤作为钠离子电池负极材料,其电化学性能十分优秀,具有较高的可逆比容量和优异的循环性能,同时也研制了具有自主知识产权不使用贵金属的层状氧化物钠铜铁锰作为正极材料,并可直接利用现有的锂离子电池生产线进行生产。对电极材料的探索以及生产过程的沿用,使得中科海钠可以很好地控制钠离子电池产品的成本,并有效提高电池性能,具有核心专利的电池正负极材料也为中科海钠带来了强大的市场优势。

钠离子电池正式的商用预计最快要在2021年左右,主要针对低速电动车市场以及储能市场,这一部分的市场最大的竞争对手是磷酸铁锂电池。

虽然钠离子电子有着高倍率性,较宽的温度适应范围,但就目前的情况看钠离子电池想要完全取代磷酸铁锂电池的可能性甚微,主要原因在于目前钠离子电池的比容量还未及磷酸铁锂的克容量。目前钠离子电池的克容量以超过铅酸电池,未来可能出现钠离子与磷酸铁锂共存的市场情况。

固态电池

固态电池的发展有他的必然性,原因在于固态电池采用不可燃的固态电解质替换现有体系下的可燃性有机液态电解质,大幅度提升了电池系统的安全性,同时能够减轻系统总量,实现能量密度的提升。固态电池在各类新型电池体系中,是距离产业化最近的下一代技术,已经成为锂电池行业内的共识。

固态电池的出现将会对现有液态锂离子电池体系下的四大材料带来不少的影响。

电解质

电解质层面上可以说是目前变化最大的材料之一。固态电池顾名思义是将原先的液态的电解质变为了固态的电解质。固态电解质不可燃烧,极大提高电池安全性。与传统锂电池相比,全固态电池最突出的优点是安全性。固态电池具有不可燃、耐高温、无腐蚀、不挥发的特性,避免了传统锂离子电池中的电解液泄露、电极短路等现象,降低了电池组对于温度的敏感性,根除安全隐患。同时,固态电解质的绝缘性使得其良好地将电池正极与负极阻隔,避免正负极接触产生短路的同时能充当隔膜的功能。

按照目前对固态电解质的研究,可将固态电解质分为聚合物、氧化物、硫化物三种体系。但是无论哪种体系都无法避免导电率低下的问题,目前三种体系的固态电解质的导电率都远低于液态电解质的水平。三种固态电解质之间对比导电率,从低到高分别是聚合物、氧化物、硫化物。较低的导电率意味着锂离子在正负极之间不能顺利的游走。

固态电池的另一个问题在于较高的界面阻抗。在电极与电解质界面上,传统液态电解质与正、负极的接触方式为液/固接触,界面润湿性良好,界面之间不会产生大的阻抗,相比较之下,固态电解质与正负极之间以固/固界面的方式接触,接触面积小,与极片的接触紧密性较差,界面阻抗较高,锂离子在界面之间的传输受阻。

低离子电导率与高界面阻抗导致了固态电池的高内阻,锂离子在电池内部传输效率低,在高倍率大电流下的运动能力更差,直接影响电池的能量密度与功率密度。

固态电池的三大体系各有优势,其中聚合物电解质属于有机电解质,氧化物与硫化物属于无机陶瓷电解质。纵览全球固态电池企业,有初创公司,也不乏国际厂商,企业之间独踞山头信仰不同的电解质体系,未出现技术流动或融合的态势。欧美企业偏好氧化物与聚合物体系,而日韩企业则更多致力于解决硫化物体系的产业化难题,其中以丰田、三星等巨头为代表。

聚合物体系:率先小规模量产,技术最成熟,性能上限低。聚合物体系属于有机固态电解质,主要由聚合物基体与锂盐构成,量产的聚合物固态电池材料体系主要为聚环氧乙烷(PEO)-LiTFSI(LiFSI),该类电解质的优点是高温离子电导率高,易于加工,电极界面阻抗可控。因此成为最先实现产业化的技术方向。但其室温离子电导率为三大体系中最低,严重制约了该类型电解质的发展。电导率过低+低容量正极意味着该材料的较低的能量与功率密度上限。在室温下,过低的离子电导率(10-5S/cm或更低)使离子难以在内部迁移,在50~80℃的环境下利用才勉强接近可以实用化的10-3S/cm。此外,PEO材料的氧化电压为3.8V,难以适配除磷酸铁锂以外的高能量密度正极,因此,聚合物基锂金属电池很难超过300Wh/kg的能量密度。

硫化物固态电解质拥有最大的潜力,但开发进度也处于最早期。其生产环境限制与安全问题是最大的阻碍。硫化物基固态电解质对空气敏感,容易氧化,遇水易产生H2S等有害气体,这意味着生产环境的控制将十分苛刻,需要隔绝水分与氧气,而有毒气体的产生也与固态电池的初衷相悖。

综合看来,聚合物体系工艺最成熟,率先诞生EV级别产品(博洛雷公司产品能量密度为100Wh/kg),其概念性与前瞻性引发后来者加速投资研发,但性能上限制约发展,与无机固态电解质复合将是未来可能的解决路径;氧化物体系中,薄膜类型开发重点在于容量的扩充与规模化生产,而非薄膜类型的综合性能较好,是当前研发的重点方向;硫化物体系是最具希望应用于电动车领域的固态电池体系,但处于发展空间巨大与技术水平不成熟的两极化局面,解决安全问题与界面问题是未来的重点。

隔膜

隔膜相较于其他材料处于较为尴尬的位置。现阶段的大部分固态电池企业的产品仍需添加少量液态电解液以缓解电极界面问题、增加电导率,因此隔膜仍然存在与电池中以用来阻隔正负极,避免电池短路。这种折中的解决方法同时拥有固态电池的性能优势,在技术难度上也更加易于实现。而随着技术推进,未来电解液用量会越来越少,当过渡到完全不含液体或液体含量足够小时,电池将取消隔膜设计。

正极材料

固态电池体系下可以提供更宽的电化学窗口,更易搭载高电压正极材料:提高正极材料容量需要充电至高电压以便脱出更多的锂,目前针对钴酸锂的电解质溶液可以充电到4.45V,三元材料可以充电到4.35V,继续充到更高电压,液态电解液会被氧化,正极表面也会发生不可逆相变,三元811电池的推广目前便受到了耐高压电解液的制约。而固态电解质的电化学窗口更宽,可达到5V,更加适应于高电压型电极材料。随着正极材料的持续升级,固态电解质能够做出较好的适配,有利于提升电池系统的能量密度。

负极材料

固态电池体系下,负极材料依然可以沿用现有体系下的石墨类与硅基类负极。但固态电池体系下对金属锂的良好兼容性,使得金属锂作为“最终负极”被使用成为可能。

锂金属的克容量为3860mAh/g,约为石墨(372mAh/g)的10倍。同时其本身就是锂源,正极材料选择面更宽,可以是含锂或不含锂的嵌入化合物,也可以是硫或硫化物甚至空气,分别对应能量密度更高的锂硫和锂空电池,理论能量密度接近当前电池的10倍。

锂金属负极在当前传统液态电池体系难以实现。锂金属电池的研究最早可追溯到上世纪60年代,并在20世纪70年代已成功开发应用于一次电池。而在可充放电池领域,金属锂负极在液态电池中存在一系列技术问题至今仍缺乏有效的解决方法,比如金属锂与液态电解质界面副反应多、SEI膜分布不均匀且不稳定导致循环寿命差,金属锂的不均匀沉积和溶解导致锂枝晶和孔洞的不均匀形成。

固态电解质在解决锂金属负极应用问题上被科学界寄予厚望。研究者把解决金属锂负极的应用问题寄希望于固态电解质的使用,主要思路是避免液体电解质中持续发生的副反应,同时利用固体电解质的力学与电学特性抑制锂枝晶的形成。此外,由于固态电解质将正极与负极材料隔离开,不会产生锂枝晶刺破隔膜的短路效应。

固态电池领域各大企业布局加速

据不完全统计,目前全球范围内致力于固态电池技术研发与应用的车企与动力电池企业有20多家,其中不少企业都宣布要量产固态电池,并制定了相应的发展路线计划。

国际上,除了大众汽车,宝马、丰田、本田、日产、松下等车企及电池企业均在固态电池领域有所布局。其中,宝马2017年就开始牵手SoildPower开发固态电池;丰田作为较早着手研发固态电池的车企之一,侧重硫化物固态电解质技术路线,有望在2022年推出搭载固态电池的车型;2020年初,丰田宣布与松下成立合资企业生产固态电池;同在2020年初,戴姆勒宣布与加拿大魁北克水电公司合作开发固态电池技术,一旦达到量产状态,将在戴姆勒旗下的电动汽车上使用。大众汽车宣布已向斯坦福大学研发固态电池的衍生企业QuantumScape追加投资2亿美元(约合14亿元人民币),旨在加速推动固态电池技术的研发和商业化量产,并预计在2025年建成一条为电动汽车生产固态电池的生产线。

与国际主流车企扎堆布局固态电池不同,国内布局固态电池的主力军是动力电池企业,传统车企仅有北汽集团与比亚迪两家布局,新造车企业的布局者相对更多。

在国内动力电池企业中,清陶能源、宁德时代、赣锋锂业、辉能、北京卫蓝、卡耐新能源等走在固态电池研发前列。据了解,清陶能源目前已开发出全固态电池,单体能量密度可达到430Wh/kg,量产阶段可达到300Wh/g以上;宁德时代在聚合物固态锂金属电池和硫化物基固态电池方向都有研究;赣锋锂业年产亿瓦时级第一代固态锂电池研发中试生产线已建成试产;卫蓝新能源2019年在江苏举行了固态电池项目奠基,计划于2020年建成年产0.1GWh固态电池生产线;辉能科技称2023年将开始全固态电池试产,2024年全固态电池量产。

新造车企业中,蔚来汽车、天际汽车、爱驰汽车已分别与辉能科技达成合作,共同研发固态电池。其中天际汽车在2019年初就推出了首款搭载固态电池的ME7样车,不过目前并无最新进展。近日,哪吒汽车宣布与清陶能源达成全面深度合作,共同推进固态电池的研发与应用。

根据盖世汽车研究院《新能源汽车动力电池产业报告(2020版)》预测分析,2020年前后电池材料将主要向镍三元+硅碳演变,到2025年富锂锰基正极材料取得突破,到2030年电解质方面取得突破后,有望实现全固态电池。国内锂电巨头宁德时代亦认为,全固态电池至少要到2030年才能进行大规模量产。

虽然固态电池量产尚需时日,但是不难看出,没能在这一轮动力电池掌握住主动权的企业,都早早地将目光锁定在下一代动力电池的赛道上,固态电池则早已进入“军备竞赛”阶段。可以说,下一个十年,谁抢下了固态电池,谁就抢下了在新能源汽车产业发展的先机。

THE END
1.1毫秒屏幕响应时间有什么用?华硕商城 在得物App发布了一条热门动态!快来围观,就等你啦!https://m.dewu.com/note/trend/details?id=253438965
2.一文2000字入门性能测试!对于互联网业务中,如果某些业务有且仅有一个请求连接,那么 TPS=QPS, 一般情况下用 TPS 来衡量整个业务流程,用 QPS 来衡量接口查询次数。 并发数 = QPS * 平均响应时间 技术上提升压力的方式 多进程:启动多个进程,每个进程虽然只有一个线程,但是多个进程可以一起执行多个任务。 https://blog.csdn.net/m0_60166861/article/details/144374821
3.计算机维修工:计算机维修工必看考点(考试必看)考试题库116、单项选择题 开机自检过程中,屏幕提示“Harddisknotpresent”或类似信息,则可能是()的问题。 A.硬盘引导损坏 B.操作系统 C.CMOS硬盘参数设置有错误 D.硬盘扩展分区损坏 点击查看答案 117、单项选择题 下列对硬盘传输率影响最小的是() A、寻道时间 B、寻址时间 C、转速 D、容量 点击查看答案 118、单项http://www.91exam.org/exam/87-4537/4537280.html
4.存储设备的故障预测与管理天翼云开发者社区存储设备故障的原因多种多样,既包括硬件层面的因素,也涉及软件层面的问题。以下是一些常见的故障原因: 硬件老化:存储设备中的电子元件、机械部件等随着使用时间的增长会逐渐老化,导致性能下降和故障率上升。 环境因素:温度、湿度、灰尘等环境因素可能对存储设备的正常运行产生影响。例如,过高的温度可能导致元件过热而失效https://www.ctyun.cn/developer/article/620856554958917
5.网站响应时快时慢的真相?只有1%的人知道网站响应时快时慢的真相?只有 1% 的人知道 2024-12-11 19:35 关注 平常工作生活中,不知你有没有遇到这种情况,有时访问网站异常的快,有时却要等待10多秒才会有响应, 这种情况下,我们一般不会太多的停留在网站,因为影响了用户体验。今天就分享记录下,我工作中遇到的一个问题。 问题现象 第一次发现这个问题,http://m.528045.com/article/d57c4424b9.html
6.软件技术基础OS习题解答系统首次产生响应为止的这段时间间隔。?影响响应时间的因素主要有:–CPU处理能力;–终端或用户数目;–调度算法(包括时间片的选取);–请求服务的时间长短(进入的先后)等。2020/4/28 电子科技大学通信与信息工程学院 6.时间片过大或过小有什么问题?时间片长度公式:T q= N q:时间片大小T:响应时间N:https://wenku.baidu.com/view/61e062e4657d27284b73f242336c1eb91b373366.html
7.GB50210标准编制组经广泛调查研究,认真总结实践经验,参考有关国际 标准和国外先进标准,并在广泛征求意见的基础上,修订了《建 筑装饰装修工程质量验收规范》GB50210 -2001。 本标准的主要技术内容是:1.总则;2.术语;3.基本规 定;4.抹灰工程;5.外墙防水工程;6.门窗工程;7.吊顶工 http://www.360doc.com/document/22/1201/16/67190878_1058401324.shtml
8.zfcg.czt.fujian.gov.cn/upload/document/20221123/e7672777cfbb48.1、投标截止时间:详见招标公告或更正公告,若不一致,以更正公告为准。 8.2、投标人应在投标截止时间前按照福建省政府采购网上公开信息系统设定的操作流程将电子投标文件上传至福建省政府采购网上公开信息系统,否则投标将被拒绝。 9、开标时间及地点:详见招标公告或更正公告,若不一致,以更正公告为准。 https://zfcg.czt.fujian.gov.cn/upload/document/20221123/e7672777cfbb4ce78c7e02ce972205c1.html
9.平台客服介入多久才能完成问题处理?影响处理时效的关键因素有哪些?在不同平台上,客服介入的时效性有所不同。一般来说,平台客服会尽量在最短时间内响应用户的请求,但实际处理完成的时间往往取决于多个因素。例如,问题的复杂性、涉及的交易金额、客服的工作量等,都会对处理进度产生影响。如果是简单的账户问题或退货申请,处理时间通常较http://www.banc.store/xxrxx/5029448.html
10.16:10复古者最爱优派24吋护眼液晶首测(全文)优派VG2438sm除以上的功能外,在性能参数方面它还支持5000万:1的动态对比度,1000:1的静态对比度,5ms的黑白响应时间,250cd/㎡的屏显亮度,178/178°的可视范围,1670万的屏显色彩数。在接口方面拥有,D-Sub(VGA),DVI-D,Displayport三种主流的视频接口,4个USB 3.0接口。那么,以上功能和参数到底拥有着怎样的表现,还得从实际的测https://lcd.zol.com.cn/487/4872848_all.html
11.考研计算机:操作系统基于时间片的轮转调度算法一个较为可取的时间片大小是略大于一次典型的交互所需要的时间,使大多数交互式进程能在一个时间片内完成,从而可以获得很小的响应时间。 二、相关试题 下列关于基于时间片的进程调度的叙述中,错误的是( )。 A. 时间片越短,进程切换的次数越多,系统开销也越大 http://sc.kaoyan365.cn/sckybk/sckyzs/33350.html
12.操作系统丨(三)作业管理51CTO博客例子:时间片大小为4 确定时间片大小考虑的因素 系统的响应时间 进程数量一定,时间片的大小与系统响应时间成正比。 T = Nq(q为时间片大小) 就绪队列中的进程数目 系统的处理能力 速度高则时间片短。 改进:虚拟时间轮转调度 思想 不小心停下来了,当想要重新执行的时候,会被优先调度,而不是重新排队。 https://blog.51cto.com/u_15298624/3303320
13.操作系统:第三章处理机调度与死锁腾讯云开发者社区时间片:分配处理机资源的基本时间单元。算法思路:时间片结束时,按FCFS算法切换到下一个就绪进程,每隔(n – 1)个时间片进程执行一个时间片q。 问题: RR算法开销:额外的上下文切换 时间片太大:等待时间过长,极限情况退化成FCFS 时间片太小:反应迅速,但产生大量上下文切换,大量上下文切换开销影响到系统吞吐量 https://cloud.tencent.com/developer/article/2068428
14.85道Java微服务面试题整理(助力2020面试)1、您对微服务有何了解? 2、微服务架构有哪些优势? 3。微服务有哪些特点? 4、设计微服务的最佳实践是什么? 5、微服务架构如何运作? 6、微服务架构的优缺点是什么? 7、单片,SOA 和微服务架构有什么区别? 8、在使用微服务架构时,您面临哪些挑战? 9、SOA 和微服务架构之间的主要区别是什么? https://maimai.cn/article/detail?fid=1411910312&efid=Wu_y-Aor0ocYJxLKspFj_A
15.面试总结:各类调度算法时间片的选取太小会频繁的发生上下文切换,增加系统开销,但利于短作业 时间片选取太大,增加了短作业的响应时间可能退化成 FCFS,有利于长作业 选取适中的时间片,应略大于一次典型交互的时间,大约 20ms~50ms 之间比较折中合适。 多级反馈队列 设置多个就绪队列,每个队列的优先级和时间片不同。第一个队列的优先级最高https://www.nowcoder.com/discuss/765643
16.单片开关电源设计要点及电子数据表格AET输入滤波电容的容量是开关电源的一个重要参数。CIN值选的过小,会使UImin值大大降低,而输入脉动电压UR却升高。但CIN值取得过大,会增加电容器成本,而且对于提高UImin值和降低脉动电压的效果并不明显。下面介绍计算CIN准确值的方法。 交流电压u经过桥式整流和CIN滤波,在u=umin情况下的输入电压波形如图1所示。该图是http://www.chinaaet.com/article/102982
17.应变片是由什么组成的应变片选择的原则是什么应变片是指一种具有压电效应的材料,在机械载荷或者外力作用下会产生电荷的变化,是制作传感器、控制系统和检测设备等的重要元件。常见的应变片由压电陶瓷和聚合物复合材料等组成,通过加工和粘合获得所需要的形态和特性。https://www.eefocus.com/e/513808.html
18.江苏专转本计算机模拟试题【解析】文件的逻辑结构可分为两大类,一类是有结构文件,也称为记录式文件,由若干记录构成的文件;另一类是无结构文件,也成为流式文件,是由字符流构成的文件。 4.【答案】独占、共享 【解析】一段时间内只允许一个进程使用的资源称为临界资源或是独占资源;一段时间内可以被多个进程所共享的资源称为共享资源,对应http://www.ndzzb.com/datas/view-14.html
19.传智高校教辅平台4、时间片概念一般用于(B) A、批处理操作系统 B、分时操作系统 C、实时操作系统 D、以上都不是 5、在分时系统中,当时间片一定时,(B)响应时间越长。 A、用户数越少 B、用户数越多 C、内存容量小 D、内存容量大 6、工厂的过程控制系统运行的操作系统最好是(B) https://tch.ityxb.com/ask/detail/25619
20.2021年4月自考操作系统概论02323真题与答案自考D.松弛耦合的多处理器系统中,每台计算机都有自己的存储器和IO设备 7.在时间片轮转调度算法中,以下不会影响时间片大小选择的因素是 A.系统对响应时间的要求 B.就绪队列中进程的数量 C.系统的平均周转时间 D.进程所需要的CPU服务总时间 8.生产者和消费者问题中,当生产者拥有缓冲池的访问权,但是却无法获得空缓冲https://www.educity.cn/zikao/247762.html