专题07五类新定义题型-2024年高考数学大题秒杀技巧及专项训练(原卷版)
【题型1数列新定义破解大法】
【题型2集合新定义破解大法】
【题型3导数新定义破解大法】
【题型4三角函数新定义破解大法】
【题型5平面向量新定义破解大法】
题型1数列新定义破解大法
新定义题型的特点:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的;遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.
下面介绍几类数列新定义
数列满足:是等比数列,,且
.
(1)求;
(2)求集合中所有元素的和;
(3)对数列,若存在互不相等的正整数,使得也是数列中的项,则称数列是“和稳定数列”.试分别判断数列是否是“和稳定数列”.若是,求出所有的值;若不是,说明理由.
问题1:根据已知及等比数列的定义求出的通项公式,由已知和求通项可得的通项公式,问题2:根据等差数列及等比数列的求和公式可得结果,问题3:根据“和稳定数列”的定义可判定.
在正项无穷数列中,若对任意的,都存在,使得,则称为阶等比数列.在无穷数列中,若对任意的,都存在,使得,则称为阶等差数列.
(1)若为1阶等比数列,,求的通项公式及前项和;
(2)若为阶等比数列,求证:为阶等差数列;
(3)若既是4阶等比数列,又是5阶等比数列,证明:是等比数列.
问题1:根据题意可得为正项等比数列,求出首项与公比,再根据等比数列的前项和公式即可得解;
问题2:由为阶等比数列,可得,使得成立,再根据阶等差数列即可得出结论;
问题3:根据既是4阶等比数列,又是5阶等比数列,可得与同时成立,再结合等比数列的定义即可得出结论.
已知数列的前项和为,若数列满足:①数列项数有限为;②;③,则称数列为“阶可控摇摆数列”.
(1)若等比数列为“10阶可控摇摆数列”,求的通项公式;
(2)若等差数列为“阶可控摇摆数列”,且,求数列的通项公式;
(3)已知数列为“阶可控摇摆数列”,且存在,使得,探究:数列能否为“阶可控摇摆数列”,若能,请给出证明过程;若不能,请说明理由.
问题1:根据和讨论,利用等比数列前n项和结合数列新定义求解即可;
问题2:结合数列定义,利用等差数列的前n项和及通项公式求解即可;
问题3:根据数列为“阶可控摇摆数列”求得,再利用数列的前项和得,然后推得与不能同时成立,即可判断.
1.设数列的各项为互不相等的正整数,前项和为,称满足条件“对任意的,,均有”的数列为“好”数列.
(1)试分别判断数列,是否为“好”数列,其中,,并给出证明;
(2)已知数列为“好”数列,其前项和为.
①若,求数列的通项公式;
②若,且对任意给定的正整数,,有,,成等比数列,求证:.
2.设满足以下两个条件的有穷数列为阶“曼德拉数列”:
①;②.
(1)若某阶“曼德拉数列”是等比数列,求该数列的通项(,用表示);
(2)若某阶“曼德拉数列”是等差数列,求该数列的通项(,用表示);
(3)记阶“曼德拉数列”的前项和为,若存在,使,试问:数列能否为阶“曼德拉数列”?若能,求出所有这样的数列;若不能,请说明理由.
3.设数列满足:①;②所有项;③.设集合,将集合中的元素的最大值记为.换句话说,是数列中满足不等式的所有项的项数的最大值.我们称数列为数列的伴随数列.例如,数列1,3,5的伴随数列为1,1,2,2,3.
(1)请写出数列1,4,7的伴随数列;
(2)设,求数列的伴随数列的前之和;
(3)若数列的前项和(其中常数),求数列的伴随数列的前项和.
4.若某类数列满足“,且”,则称这个数列为“型数列”.
(1)若数列满足,求的值并证明:数列是“型数列”;
(2)若数列的各项均为正整数,且为“型数列”,记,数列为等比数列,公比为正整数,当不是“型数列”时,
(i)求数列的通项公式;
(ii)求证:.
5.已知数列为有穷数列,且,若数列满足如下两个性质,则称数列为的增数列:
①;
②对于,使得的正整数对有个.
(1)写出所有4的1增数列;
(2)当时,若存在的6增数列,求的最小值.
6.已知数列为有穷数列,且,若数列满足如下两个性质,则称数列为m的k增数列:①;②对于,使得的正整数对有k个.