第三章RV减速器虚拟样机的建模3.1RV减速器虚拟样机的几何建模3.1.1基于特征的参数化建模一、参数化造型技术参数化技术以一种全新的思维和方式进行产品的造型、创新设计和修改设计,是指设于对象的结构形状比较确定,可以用一组参数来定义几何图形(体素)的尺寸数值并约束尺寸的关系,为设计者进行几何造型提供条件。参数与设计对象的控制尺寸有明显的对应关系,设计结果的修改受尺寸驱动的影响,所以也称为参数化尺寸驱动。参数化技术以其强有力的草图设计、尺寸驱动修改等功能,成为初始设计、产品建模(实体造型)及修改设计、系列化设计、多方案比较和动态设计的有效手段。参数化设计的出发点是,通过说明产品的几何组成要素之间的几何特征及其相互位置关系,定义一类形状或结构相似的几何实体,该类实体的实例由一组特定的几何约束值确定。由此,参数化实体模型是由几何模型和几何约束模型两部分组成。完备的约束模型通过尺寸对几何形状的某些控制元素加以约束,构成对几何形体数据的唯一而完整的表示。在产品的几何形状修改和重建时,可以通过几何约束建立尺寸与几何定义变量之问的约束方程组,求解约束方程组以实现尺寸变化到几何改变的传递。
参数化造型是参数化技术在几何造型中的具体应用,使用约束来定义和修改几何模型,约束包括尺寸约束、拓扑约束和工程约束(如应力、性能等),这些约束反映了设计时要考虑的因素。
本课题研究的减速器型号为RV-6AⅡ,用于120kg点焊机器人上,其额定工况是输入转速1500r/min,负载为58N·m,下图为利用UG生成的该型号RV减速器的爆炸图,主要由齿轮轴、行星轮、曲柄轴、转臂轴承、摆线轮、针轮、刚性盘及输出盘等零部件组成。
一、零部件介绍(l)齿轮轴:齿轮轴用来传递输入功率,且与渐开线行星轮互相啮合。(2)行星轮:它与转臂(曲柄轴)固联,两个行星轮均匀地分布在一个圆周上,起功率分流的作用,即将输入功率分成两路传递给摆线针轮行星机构。(3)转臂(曲柄轴)H:转臂是摆线轮的旋转轴。它的一端与行星轮相联接,另一端与支撑圆盘相联接,它可以带动摆线轮产生公转,而且又支撑摆线轮产生自转。(4)摆线轮(RV齿轮):为了实现径向力的平衡在该传动机构中,一般应采用两个完全相同的摆线轮,分别安装在曲柄轴上,且两摆线轮的偏心位置相互成180°。(5)针轮:针轮与机架固连在一起而成为针轮壳体,在针轮上安装有30个针齿。(6)刚性盘与输出盘:输出盘是RV型传动机构与外界从动工作机相联接的构件,输出盘与刚性盘相互联接成为一个整体,而输出运动或动力。在刚性盘上均匀分布两个转臂的轴承孔,而转臂的输出端借助于轴承安装在这个刚性盘上。
图3-2是RV传动简图。它由渐开线圆柱齿传输线行星减速机构和摆线针轮行星减速机构两部分组成。渐开线行星齿轮3与曲柄轴2连成一体,作为摆线针轮传动部分的输入。如果渐开线中心齿轮1顺时针方向旋转,那么渐开线行星齿轮在公转的同时还有逆时针方向自转,并通过曲柄带动摆线轮作偏心运动,此时摆线轮在其轴线公转的同时,还将在针齿的作用下反向自转,即顺时针转动。同时通过曲柄轴将摆线轮的转动等速传给输出机构。为计算RV传动的传动比,将上述的传动简图用图3-3所示的结构简图代替。该机构简图包括两个简单行星机构:x1和x2。输出件A为中心轮1,输出件B为输出盘6,且有ω6=ω4。支承件E为针轮7,渐开线行星轮2与转臂(曲柄轴)3均为辅助件d。
再由图1-2,按照封闭差动轮系求解传动比的如下关系式来计算其传动比:
从图1-1可知,当针轮7固定,输出盘6输出时
式中Z1——渐开线中心轮齿数;Z2——渐开线行星轮齿数;Z4——摆线轮齿数;Z7——针轮齿数,Z7=Z4+1。
经计算,本型号RV减速器的传动比为103。
其中各个符号含义如下:(参见图3-4)
zg——摆线轮齿数;e——偏心距;r——针齿半径;φ′b——针齿中心相对摆线轮中心转过的角度;Rz——针齿分布圆半径;
zb——针齿齿数;k1——短幅系数或变幅系数;γ——M点公法线与X轴的夹角
参照上述的摆线轮齿廓形状曲线表达式,在UG中建立的摆线的参数表达式见下图:
3.2RV减速器的系统仿真3.2.1系统仿真概述机械系统仿真指工程师在数字计算上建立系统的模型,并在模型上进行不同的实验,其后以图形或表格等方式显示该系统在各种工程条件下的运动特性,从而修改并优化原始设计方案。一般机械系统仿真过程流程图:
(1)基于恢复的接触在这种方式中,ADAMS的分析引擎一一ADAMS/Solver根据惩罚系数和恢复系数来计算接触力,其中惩罚系数定义了接触材料的局部刚度特性,惩罚系数大则保证一个几何体与另一个几何体的穿入深度较小,然而惩罚系数大会导致数值积分困难;恢复系数则表示碰撞接触中的能量损耗。如果其值为O,则表示两个碰撞体为完全的、理想的塑性接触。如果值为1,则表示为完全弹性碰撞,没有能量损耗。它的取值与接触材料、摩擦有关系。(2)普于IMPACT函数的接触在这种方式中,ADAMS/Solver根据ADAMS函数库中的IMPACT函数来计算接触力,该力实质上被模拟为一个非线形的弹簧阻尼器。本论文中所定义的接触力都是基于IMPACT函数的接触模型。在ADAMS中定义IMPACT函数的方程为:
上式中,·x:指定一个距离变量来表示被定义接触的两物体间的相对位移;
·xl:一个正的实数,指定x的自由长度,如果x小于x1那么ADAMS/Solver计算的力值为正,否则,力值为零(具体含义见图3-7),x1可以为实数、函数或变量;·k:为刚度(Stiffness),指定被用于计算接触碰撞模型中法向作用力的材料刚度。一般来讲,刚度越高,接触体就越硬。·cmax:为阻尼(Damping),是一个非负的实数,用于指定接触材料的阻尼属性。·d:称为穿入深度(PenetrationDepth),定义ADAMS/Solver启动完全阻尼的深度。ADAMS/Solver使用一个立方函数来模拟阻尼系数,当深度为零时阻尼系数为零,当深度达到所定义的穿入深度时为完全阻尼。·e:力指数(ForceExponent):ADAMS?Solver将法向作用力建摸为一个非线形弹簧阻尼器。
(二)基于力的接触(Force-BasedContact)模型基于力的接触是作用在零件上的特殊的力。当指定的零件几何体彼此进入一个预定义的接近程度,这些力就将会激活。ADAMs/Solver将根据一个接触数组来确定这些力的值,而该数组中的几个主要参数与IMPACT函数中的参数意义相似。具体如下:·刚度:单元的穿入深度所产生的力。·力指数:力变形特征的指数。·阻尼:最大粘性阻尼系数。·穿入深度:全阻尼开始启动的穿入深度。·静摩擦系数(μs):作用在相对运动相反方向上的摩擦力与法向作用力的比值。·静摩擦滑动速度(Vs):静摩擦系数达到全值的速度。·动摩擦系数(μk):作用在相对运动相反方向上的摩擦力与法向作用力的比值。·动摩擦滑动速度(Vk):静摩擦系数完全转变为动摩擦系数的速度值。几个摩擦参数的关系如下图所示:
这些参数的设定是令大多工程师们较头疼的,在对其含义透彻理解的基础上还涉及较多的工程实际经验。不仅要考虑相碰撞的两物体的材料,还与机构所工作的环境(有无润滑油)有关,经过多次实验且与有经验的工程师交流,最终将接触约束的各参数定义为下表(表3-l)所示:
表3-1接触约束的参数定义2.运动激励与力:电机转速与输出扭矩,即在输入轴的旋转副上施加旋转运动激励(RotationalMotion),使输入轴保持等速旋转,在输出盘上施加负载(Simple_componentTorque)。约束定义完后需对整个模型进行校验,确保所有的零件均施加了约束且约束施加合理准确。下面是验证结果:VERIFYMODEL:.RV_reducer29GrueblerCount(approximatedegreesoffreedom)26MovingParts(notincludingground)20RevoluteJoints3FixedJoints3Parallel_axesPrimitive_Joints1Motions2Gears29DegreesofFreedomfor.RV_reducerTherearenoredundantconstraintequations.Modelverifiedsuccessfully仿真到某一时刻的模型见下图:
3.2.3RV减速器虚拟样机的验证为了检验不同的输入角速度情况下,输出角速度与输入角速度的关系是否保持为减速比,可将输入角速度设置为变量,取不同的值进行验证。(1)空载情况下本课题中对输入转速取两个值(n1=500转/分3000度/稍及n1=100转/分=600度/秒)分别进行了仿真,仿真结果如下图(图3-9,3-10):
按RV减速器传动比的理论计算公式i16=1+(z2/z1)Z7,由村课题所研究的RV减速器的参数:Z2=34,Z1=10,Z7=30,计算得到总的传动比为103,而由仿真得到的传动比在图3-8中为i=3000/29.12=103.02,在图3-9中为i=600/5.829=102.93,且图中摆线轮与输出盘的角速度相等说明输出部分施加的约束满足等角速度输出原理。(2)额定负载下在输出轴上施加58N·m的力矩,输入轴转速为1500转/分(即9000度/秒),仿真的结果为:
虚拟样机模型验证的结论:对该虚拟样机模型,只要定义了输入转速和负载扭矩,就可以进行正确的仿真,并且传动比总为103,也就是说该模型适合于任何工况,并且针齿与摆线轮间作用力的变化规律符合工程上的实际情况,因此该样机模型建立正确,可以进行下面的分析。