入选福建省“十四五”普通高等教育本科规划教材
配套课程荣获“2018年国家精品在线开放课程”和“2020年国家级线上一流本科课程”
2019年福建省精品在线开放课程
全国500多所高校大数据课程选用本教材
京东、当当等各大网店畅销书籍,累计销量突破18万册
扫一扫手机访问本主页
教材配套资源快速访问链接
样书申请
授课教师可以向人民邮电出版社申请样书,出版社联系人孙澍(手机:18911351293)。
下载专区
作者介绍
林子雨(1978-),男,博士(毕业于北京大学),国内高校知名大数据教师,厦门大学计算机科学系副教授,厦门大学数据库实验室负责人,中国计算机学会数据库专委会委员,中国计算机学会信息系统专委会委员,中国高校首个“数字教师”提出者和建设者。2013年开始在厦门大学开设大数据课程,建设了国内高校首个大数据课程公共服务平台,平台累计网络访问量超过1000万次,成为全国高校大数据教学知名品牌,并荣获“2018年福建省教学成果二等奖”和“2018年厦门大学教学成果特等奖”,主持的课程《大数据技术原理与应用》获评“2018年国家精品在线开放课程”。
主要研究方向为数据库、数据仓库、数据挖掘、大数据、云计算和物联网,并以第一作者身份在《软件学报》《计算机学报》和《计算机研究与发展》等国家重点期刊以及国际学术会议上发表多篇学术论文。作为项目负责人主持的科研项目包括1项国家自然科学青年基金项目(No.61303004)、1项福建省自然科学青年基金项目(No.2013J05099)和1项中央高校基本科研业务费项目(No.2011121049)。
教材介绍
前言
《大数据技术原理与应用(第2版)》于2017年1月出版,在过去的三年里,大数据技术又获得了新的发展,开源流计算框架Flink迅速崛起,在市场上和Spark展开了激烈的角逐。与此同时,Hadoop、HBase和Spark的版本也在不断更新升级,一些编程接口发生了变化。因此,为了适应大数据技术的新发展,继续保持本书的先进性和实用性,我们及时对第2版内容进行了补充和修订。
本书是厦门大学计算机科学系大数据课程的配套教材,根据近几年的教学实践,建议安排32学时理论课,16个教学周,每周2学时。每章的具体学时分配如下:第1、3、4、5、8、9、11、12、13、15章每章安排2学时;第2、7、10章每章安排4学时;第6、14、16、17章这四章内容由学生自学完成。已经建设大数据教学实验室的高校,可以增加16学时上机实践课。
本书由林子雨执笔。在撰写第3版过程中,厦门大学计算机科学系硕士研究生程璐、林哲、郑宛玉、陈杰祥、陈绍纬、周伟敬等同学做了大量辅助性工作,在此,向他们的辛勤工作表示衷心的感谢。
大数据技术处于快速发展变革之中,我们厦门大学数据库实验室团队会持续跟踪大数据技术发展趋势,努力保持本书内容的新颖性,并把一些较新的教学内容及时发布到本书官网。由于笔者能力有限,书中难免存在不足之处,望广大读者不吝赐教。
林子雨
厦门大学计算机科学系数据库实验室
2020年3月
篇章介绍
第一篇大数据基础
本篇包括2章。第一章介绍大数据的概念和应用,分析了大数据、云计算和物联网的相互关系;第二章介绍大数据处理架构Hadoop。
第二篇大数据存储
本篇包括4章。第三章介绍分布式文件系统HDFS;第四章介绍分布式数据库HBase;第五章介绍NoSQL数据库;第六章介绍云数据库。
第三篇大数据处理与分析
第四篇大数据应用
大数据已经在社会生产和日常生活中得到了广泛的应用,对人类社会的发展进步起着重要的推动作用。本篇介绍大数据在互联网、生物医学、物流、城市管理、金融、汽车、零售、餐饮、电信、能源、体育娱乐、安全、政府、日常生活等方面的应用,从中我们可以深刻地感受到大数据对社会的影响及其重要价值。
本篇包括3章。第15章以推荐系统为核心介绍大数据在互联网领域的应用;第16章介绍大数据在生物医学领域的应用;第17章介绍大数据在其他领域的应用。其中,第15章需要重点理解,其他章节可以作为开拓视野的拓展性阅读材料。
第3版教材目录
教学实践
教材勘误
注:在教材使用过程中,如发现任何错误,欢迎联系教材作者林子雨:ziyulin@xmu.edu.cn。在此向读者表示衷心的感谢!
致谢
本书由林子雨执笔。从2015年至今,已经诞生第1版、第2版和第3版教材,在各个版本教材的撰写过程中,实验室很多同学做了大量辅助性工作,包括厦门大学计算机科学系硕士研究生刘颖杰(2012级硕士研究生)、叶林宝(2012级硕士研究生)、蔡珉星(2013级硕士研究生)、李雨倩(女,2013级硕士研究生)、谢荣东(2014级硕士研究生)、罗道文(2014级硕士研究生)、邓少军(2014级硕士研究生)、阮榕城(2015级硕士研究生)、薛倩(2015级硕士研究生)、魏亮(2016级硕士研究生)、曾冠华(2016级硕士研究生)、程璐(2017级硕士研究生)、林哲(2017级硕士研究生)、郑宛玉(2018级硕士研究生)、陈杰祥(2018级硕士研究生)、陈绍纬(2019级硕士研究生)、周伟敬(2019级硕士研究生)以及本科生黄梓铭(2011级本科生)、李粲(女,2012级本科生)等。在此,向这些同学的辛勤工作表示衷心的感谢。同时,衷心感谢实验室夏小云老师对教材建设作出的大量奉献。