深度学习自然语言处理(NLP)知识图谱:知识图谱构建流程本体构建知识抽取(实体抽取关系抽取属性抽取)知识表示知识融合知识存储元気森林

本体构建方法还没有形成统一的规范,主要原因是众多研究者所处的领域和构建目的不同,因此,他们所采取的方法也不尽相同。研究者提出了多种本体构建方法,领域内普遍认可的主要有以下几种:

为了更好的构建本体,各领域纷纷开发适合自己领域的本体构架工具。在众多本体构建工具中存在着六个知名的构建工具,它们分别是:Protege、Ontolingua、OntoSaums、OntoEdit以及WebOnto。Protege是斯坦福大学研究人员根据本体构建需要开发的一款本体开发软件,为实现工具软件对其他语言的兼容性和开放性,Protege软件的开发采用面向对象语言—Java语言进行开发。

类的层次结构还只是本体的骨架,不足以全面表现领域知识和提供系统能力问题所需要的答案信息,其血肉就要通过类的关系,即属性来充实了。

属性分为外部属性和内部属性:

在对类的属性进行定义之后,应该根据类目的层次关系和属性的特征对属性所包含的不同分面分别进行定义,进一步保证属性的完整性。如对属性的取值进行定义,对属性的基数进行定义等:

本体中的关系多种多样,除了基本的语义关系,很多类目关系还需要用户自主归纳总结然后定义。对于本体的基本语义关系来说,主要有四种,分别是:part-of、kind-of、instance-of和attribute-of。

构建本体之前要有详细的规划,包括选择合适的本体描述语言、本体构建的工具以及本体构建的方法,做到统筹兼顾,全面把握本体构建的整个过程。在大众分类标签的基础上,运用微调后的七步法,采用protege4.3软件,展示一下旅游领域本体的构建过程。

本体构建完成后,需要对形成的本体进行保存。Protege本体构建软件为本体文档的保存提供了多种形式,如RDF/XML、OWL等保存格式。

使用各种转换软件即可实现。比如:neosemantics-3.4.0.2支持3.4.x版本neo4j数据库。

实体抽取。主要指的是从自然文本中抽取到我们所需要的命名实体(例如:地名、人名,以及各种专有名词)。这个过程也叫做命名实体识别(namedentityrecognition,简称NER)。最早的命名实体识别过程,都是基于规则的,由于所有的规则都是需要人为手工的编写,因此需要耗费大量的人力,可扩展性也很差。

在我们得到实体之后,就考虑从文本中挖掘出实体与实体之间的语义信息,也就是它们之间的关联关系。关系抽取不仅是信息抽取的任务之一,也是构建和补全知识图谱的关键所在,其研究的主要内容是从文本内容中挖掘出实体与实体之间的语义关系,从纯文本生成关系数据的过程,是自然语言处理(NLP)中的关键任务。该任务可以描述为:给定一段文本S,确定两个目标实体对的关系类别rrr。最早的关系抽取,是通过人工编写一系列的规则,接着采用模式匹配的方式去进行关系挖掘。现在都是通过神经网络模型抽取到句子的信息,在根据信息对关系进行分类。

中文数据集可用成熟的LTP工具包实现关系抽取。英文数据集可用成熟的NLTK工具包实现关系抽取。

知识图谱的本质就是图,其中点代表实体,边代表关系。目前可以用两种形式来表示知识图谱。第一种就是RDF,第二种就是属性图的形式。

word1="七星景区"word2="七星公园"r=synonyms.compare(word1,word2,seg=fales)synonyms.compare会返回word1和word2的相似度,seg表示是否需要分词。在实体合并部分仍然会使用到Synonyms。具体实现算法分为3部分,第一部分实体链接、第二部分属性链接、第三部分属性值链接。

知识图谱存储主要可以通过三种方式:第一种是关系数据库(MySQL);第二种是文档数据库(MongoDB);第三种是图数据库(Neo4j)。Neo4j的优势在于:

THE END
1.一文了解什么是NLP(自然语言处理)图解自然语言处理是如何工作的自然语言处理(NLP)是一种专业分析人类语言的人工智能。(下文皆简称为“NLP”),它的工作原理: 接收自然语言,这种语言是通过人类的自然使用演变而来的,我们每天都用它来交流 转译自然语言,通常是通过基于概率的算法 分析自然语言并输出结果 简而言之,这就是一个创建算法的过程。 https://blog.csdn.net/footless_bird/article/details/143424154
2.重磅!!“NLP系列教程01”之自然语言处理概要自然语言理解的终极目标就是实现AI-Complete[1],它的意思就是能够完全理解和语言代表符号的含义。但是不管以什么标准进行衡量这都是很难达到的,即使拥有最强大脑的人类也很难能达到这一点。 当前自然语言处理的基本流程图如下所示,自然语言理解主要分析的两块分别是句法分析和语义理解。 https://cloud.tencent.com/developer/article/1483235
3.人工智能算法小白入门系列上图(图1)充分展示了自然语言处理工程化中的各个流程模块,依次包括:1. 业务场景分析2. 数据获取 3.数据预处理 4. 特征工程 建模与训练 6. 模型评估 7. 模型部署与管理 8.模型性能与监控等。文章将从这几个维度依次展开解析。 三、细节描述 1、业务场景分析 https://blog.itpub.net/70001864/viewspace-2781679/
4.自然语言处理入门学习<一>本教程英文处理使用的是NLTK这个Python库,中文处理使用的是jieba这个Python库,主要是看July7月学习NLP视频学习而来,如有侵权,立即删除。Natural Language Processing(NLP)自然语言处理主要是处理以及理解自然语言的计算过程。整个自然语言处理的大致流程入下图所示:https://zhuanlan.zhihu.com/p/24219196
5.「自然语言处理(NLP)」入门系列(一)初识NLP自然语言处理流程图 1、语音或文本的输入和初始处理过程,并将其分解成小块进行处理。对于语音来说,这一步叫做语音分析,它包括把语音分解成单个的声音,叫做音素。对于文本输入,这包括光学字符识别(OCR)和标记化。OCR是用来识别文本中的单个字符的,如果它是作为图像而不是字符组成的单词输入的。标记化https://www.jianshu.com/p/f32417329fdf
6.NLP自然语言处理完整流程自然语言处理 完整流程 第一步:获取语料 1、已有语料 2、网上下载、抓取语料 第二步:语料预处理 1、语料清洗 2、分词 3、词性标注 4、去停用词 三、特征工程 1、词袋模型(BoW) 2、词向量 第四步:特征选择 第五步:模型训练 1、模型 2、注意事项 (1)过拟合 (2)欠拟合 (3)对于神经网络,注意梯度消失和https://www.pianshen.com/article/15001392201/
7.自然语言处理示意图自然语言处理基本方法自然语言处理 示意图 自然语言处理基本方法 基本的分词方法包括最大匹配法、最大概率法(最短加权路径法)、最少分词法、基于HMM的分词法、基于互现信息的分词方法、基于字符标注的方法和基于实例的汉语分词方法等。 1.最大匹配法 最大匹配法需要一个词表,分词的过程中用文本的候选词去跟词表中的词匹配,如果匹配https://blog.51cto.com/u_16099320/10554504
8.自然语言处理模型流程包含六个步骤自然语言处理(NLP)模型的一般处理流程可以归纳为以下六个步骤: 一、数据收集与预处理 数据收集:从各种来源收集大规模的文本数据,这些数据将用于训练和优化NLP模型。 预处理:对收集到的文本数据进行清洗和整理,包括去除无关字符、纠正拼写错误、统一格式等。 https://www.ai-indeed.com/encyclopedia/10660.html
9.自然语言处理的流程特征提取是自然语言处理中的另一个关键环节。在这一阶段,研究人员利用各种技术从预处理后的文本中提取有意义的特征。这些特征可能包括词频统计、n-gram特征、TF-IDF值等。此外,深度学习模型如词嵌入技术也可以自动学习文本中的语义特征。最后,模型训练和评估是自然语言处理流程的核心部分。在这一阶段,https://zhidao.baidu.com/question/1778446270156155020.html