python拓端数据自然语言处理真实项目实战拓端数据

余弦相似度,又称为余弦相似性,是通过计算两个向量的夹角余弦值来评估他们的相似度。余弦相似度将向量根据坐标值,绘制到向量空间中,如最常见的二维空间。

将向量根据坐标值,绘制到向量空间中。如最常见的二维空间。求得他们的夹角,并得出夹角对应的余弦值,此余弦值就可以用来表征,这两个向量的相似性。夹角越小,余弦值越接近于1,它们的方向更加吻合,则越相似。

单位向量是指模等于1的向量。由于是非零向量,单位向量具有确定的方向。一个非零向量除以它的模,可得所需单位向量。单位向量有无数个。(矢量和向量是同一个意思,Vector,这里习惯用矢量这个词语)

平行四边形定则解决向量加法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果为公共起点的对角线。平行四边形定则解决向量减法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果由减向量的终点指向被减向量的终点。

image.png

代数定义设二维空间内有两个向量

,定义它们的数量积(又叫内积、点积)为以下实数:

更一般地,n维向量的内积定义如下:

点乘的结果就是两个向量的模相乘,然后再与这两个向量的夹角的余弦值相乘。或者说是两个向量的各个分量分别相乘的结果的和。很明显,点乘的结果就是一个数,这个数对我们分析这两个向量的特点很有帮助。如果点乘的结果为0,那么这两个向量互相垂直;如果结果大于0,那么这两个向量的夹角小于90度;如果结果小于0,那么这两个向量的夹角大于90度。

Token在词法分析中是标记的意思。自然语言处理中,一般来说,Token代表“词”。自然语言预处理中,一个很重要的步骤就是将你收集的句子进行分词,将一个句子分解成“词”的列表。

LinearRegressionfromsklearn.linear_modelimportLinearRegressionfit(X,y[,n_jobs])对训练集X,y进行训练。是对scipy.linalg.lstsq的封装score(X,y[,]sample_weight)定义为(1-u/v),其中u=((y_true-y_pred)2).sum(),而v=((y_true-y_true.mean())2).mean()最好的得分为1.0,一般的得分都比1.0低,得分越低代表结果越差。其中sample_weight为(samples_n,)形状的向量,可以指定对于某些sample的权值,如果觉得某些数据比较重要,可以将其的权值设置的大一些。

注意:在gensim以前版本中TaggedDocument是LabeledSentence

Savetheobjecttofile(alsoseeload).fname_or_handleiseitherastringspecifyingthefilenametosaveto,oranopenfile-likeobjectwhichcanbewrittento.Iftheobjectisafilehandle,nospecialarrayhandlingwillbeperformed;allattributeswillbesavedtothesamefile.语料库建成之后,就可以进行一些有趣的检索了。例如参考文档[Algorithm&NLP]文本深度表示模型——word2vec&doc2vec词向量模型中的句子相似度实验:

下面是sentence2vec的结果示例。先利用中文sentence语料训练句向量,然后通过计算句向量之间的cosine值,得到最相似的句子。可以看到句向量在对句子的语义表征上还是相当惊叹的。

这里的相似度检索是指,给定一个正面的句子,然后检索和其相似度最大的句子。当然,这里也可以指定一个负面的句子,也就是和这个句子越不相似越好。这里有一个限制,如果正面的句子和负面的句子,进行分词之后,没有一个词语是被训练过的(被训练过的词语,是指语料库里面存在的词语),则无法进行操作。

具体在求相似度的操作之前,检索用向量需要进行一下处理。假设positive变量是一个数组,数组里面存放着正面的Token。corpus[token]表示token的矢量,这里对矢量进行按列求和,结果是一个和token维度一样的矢量。换句话说,就是将多个矢量合并为单个矢量。(Token矢量的求和矢量)然后将上面那个“Token矢量的求和矢量”,和新的positive的推测矢量进行相加,获得一个新的"求相似度用矢量"。

(Negative和Positive类似)

在语料库对象(DocumentModel)中有一个很有用的方法infer_vector,这个方法可以基于当前的文档模型快速,将一个文档转换(按照模型推测)成一个矢量。

infer_vector(doc_words,alpha=0.1,min_alpha=0.0001,steps=5)Inferavectorforgivenpost-bulktrainingdocument.Documentshouldbealistof(word)tokens.在机器学习界,有两种机器学习方式,一种是Online的,一种是Offline的。Online的方式,模型可以实时更新,新的样本会被实时进行训练,训练结果也实时反映到模型中去。Offline的方式,如果有新的样本,则需要将新老样本放在一起,重新进行训练。这里的话,模型无法进行Online的训练,所以新的样本,只是基于训练好的模型,被转换(推测Infer,有些类似于预测Predict)为一个矢量。

相似度计算的核心方法是most_similar

ComputethecentroidsonXbychunkingitintomini-batches.fit拟合操作,实际上就是计算每个簇的质心。所以说,如果簇只有一个的话,拟合的意义是求出整个数据的质心。predict(X)PredicttheclosestclustereachsampleinXbelongsto.predict预测操作,是给出每个样本属于哪个簇的结果

代码的逻辑如下:fit:XX[tag]里面的tag表示收集渠道,XX[tag]表示某个渠道的样本矢量数组:_cf[tag]:表示某个渠道的CommonFactor矢量,这里使用np.array(XX[tag]).mean(axis=0)按列求均值获得的。每一个渠道有一个CommonFactor矢量。remove代码则是将某个渠道里面所有的矢量,都剪去CommonFactor矢量(代码有删减,原来代码里面有对于未知渠道的防御代码,这里已经简化)

同时,我们还需要获得一个训练的得分(score)

评价训练得分的部分使用了余弦原理,通过单位向量的点乘(点积)结果来获得相似度。注意,一定要将两个矢量都单位化,转换为模为1的矢量,这样点乘出来的结果才是余弦值。负分数=矢量单位化(待预测矢量-簇的权重为正数的矢量均值)点积单位矢量化簇的正负差

推荐通过网络上的廖雪锋的Python教程学习python语法

numpysum

axis:求和的维。

numpymean

axis:求平均的维。

lambda和浮点数

python中使用.1代表浮点数0.1或者1.代表浮点数1.0。原因是要保证结果的精度,防止程序自动强制转换。

score=lambdaX,y:1.-((y-X)**2).sum()/((y-y.mean())**2).sum()percentile幾つかの数値データを小さい順に並べたとき、小さい方から数えて全体のX%に位置する値をXパーセンタイルと言います。(数值按照从小到大进行排列,从小的数字开始计算,全体数字的X%的位置,数值是多少)

例えば10人のクラスがあるとして、各生徒のテストの点数が[40,50,60,70,75,80,83,86,89,95]だったとします。その時、下から95%に位置する点数(逆に言うと上位5%に位置する点数)が何点なのか示すものが95パーセンタイルになります。

THE END
1.自然语言处理的过程包括哪五步自然语言处理的过程主要包括以下五步: 文本预处理: 这一步主要是对原始文本进行清洗和整理,去除噪声和冗余信息。 例如,去除标点符号、转换为小写字母(针对英文文本)、去除停用词(如“的”、“是”等常用但对意义贡献不大的词)。 对于中文文本,还需要进行分词处理,将连续的汉字序列切分成独立的词或词组。 https://www.ai-indeed.com/encyclopedia/9243.html
2.自然语言处理(NLP)的5个步骤自认语言处理的流程是什么什么是自然语言处理(NLP)? 自然语言处理是一系列机器执行的步骤,用于分析、分类和理解口语和书面文本。这一过程依赖于深度神经网络风格的机器学习技术,以模拟人脑学习和处理数据的能力。 企业利用遵循这五个NLP步骤的工具和算法,从海量数据中提取有价值的信息,并据此做出明智的商业决策。NLP在商业领域的一些应用实例包括https://blog.csdn.net/swindler_ice/article/details/142833082
3.自然语言处理一般有哪些基本过程自然语言处理工程师 自然语言处理(NLP)是计算机科学中的一个重要领域,它旨在让计算机能够理解和生成人类语言。在自然语言处理的过程中,通常包含一系列基本步骤,这些步骤共同构成了NLP任务的处理流程。下面我将为您详细阐述这些基本过程: 1. 语料预处理 这是NLP任务的起点,主要包括以下几个步骤: 数据清洗:从原始文本中https://agents.baidu.com/content/question/fbed6bf1ec2faf175a04a13f
4.自然语言处理过程的五个层次自然语言处理(NLP)的五个层次: 词法分析(Lexical Analysis): 词法分析是NLP的第一步,它涉及将文本分解为基本单位,通常是单词或标记。 词法分析的目的是识别文本中的词汇和语法结构。 词法分析包括分词(Tokenization)、去除停用词(Stopword Removal)、词干提取(Stemming)和词形还原(Lemmatization)等过程。 https://m.elecfans.com/article/3696997.html
5.自然语言处理技术(精选十篇)由于计算机严密规范的逻辑特性与自然语言的灵活多变使得自然语言处理技术较复杂。通过多年的发展,该项技术已取得了巨大的进步。其处理过程可归纳为:语言形式化描述、处理算法设计、处理算法实现和评估。其中,语言形式化描述就是通过对自然语言自身规律进行研究,进而采用数学的方法将其描述出来,以便于计算机处理,也可认为是https://www.360wenmi.com/f/cnkeys56z2no.html
6.自然语言处理如何处理文本自然语言处理的流程一、自然语言处理 一般来说语言的处理过程分为以下几步: 而中间的两步,句法分析和语义分析是我们自然语言处理课程的主要内容。 以下列出的是NLP的一些应用: 近些年,NLP在工业应用上取得了巨大的成功: 在讲到深度学习之前,我们先来构建一些概念。一般来说信号处理、数据挖掘等等都只是处理数据,从一堆随机数据里面找出https://blog.51cto.com/u_16213716/10772721
7.集成本体与自然语言处理的BIM建筑施工过程安全风险检查研究最后开发了施工过程安全风险检查系统,并利用案例验证了该系统的检查效果。本文提出利用本体技术进行住宅建筑的动态施工过程安全检查和基于自然语言处理的智能化呈现的方法,不仅实现了安全知识重用和分享,并且为安全管理问题即时性解决和智能化呈现提供了解决思路,为安全管理的效率提升做出一定的贡献。https://cdmd.cnki.com.cn/Article/CDMD-10561-1018871984.htm
8.智能型文字游戏开发工具如果当前单句和上一句话是因果关系、先后顺序关系等,就要调用存储过程InsertSS,把这两句话一起存入知识表2。 调用存储过程single,执行单句的自然语言处理。 如果当前句和之前句是关联的双句,但没有提问词,就调用存储过程AnswerSS,问当前句,回答之前句,问之前句,回答当前句。如果回答不了,用抽象句、甲乙句再试。 https://www.cngal.org/articles/index/1857
9.《2021科技趋势报告》重磅发布,正视中国AI发展力量,预言未来世界放射学家和病理学家越来越依赖人工智能来帮助他们进行诊断医学成像。到目前为止,大多数获得批准的设备都增强了检查图像和进行诊断的过程。但是新兴的自主产品正在进入临床环境。 2.5 自然语言处理算法检测病毒突变 自然语言处理 (NLP) 算法通常用于文本、单词和句子,被用来解释病毒的遗传变化。蛋白质序列和遗传密码可以使用https://www.cn-healthcare.com/articlewm/20210323/content-1202112.html
10.2020届计算机科学方向毕业设计(论文)阶段性汇报融入知识图谱的自然语言处理——第二次汇报 本次汇报将主要更新建图算法设计,深度学习模型设计方案、以及在两个关系抽取数据集上的初步实验进展;在训练调优方向,稳定整体训练过程并减少数据分布不平衡带来的影响,提升模型整体表现;继续探索针对知识图谱子图的图神经网络更新策略,利用好关系类型在三元组表征方式中的信息,高https://zhiyuan.sjtu.edu.cn/html/zhiyuan/announcement_view.php?id=3709
11.节点范文12篇(全文)(3)对于原始的词-文本矩阵,通过LSA分析提取出k维语义空间,在保留大部分信息的同时大大得降低了空间维度,这样用低维词、文本向量代替原始的空间向量,可以有效地处理大规模的文本库。 (4)LSA不同于传统的自然语言处理过程和人工智能程序,它是完全自动的。所谓自动,就是LSA不需要人工干预,不需要预先具有语言学或者知觉https://www.99xueshu.com/w/ikey5j38kvf0.html
12.自然语言处理一般处理流程文本情感分析和观点挖掘(Sentiment Analysis),又称意见挖掘(Opinion Mining)是自然语言处理领域的一个重要研究方向。简单而言,是对带有情感色彩的主观性文本进行分析、处理、归纳和推理的过程。 情感分析技术可以分为两类,一类是基于机器学习的方法,通过大量有标注、无标注的主观语料,使用统计机器学习算法,通过提取特征,进https://www.jianshu.com/p/4f79815b493f
13.中断处理的基本过程自然语言处理的基本过程01 自然语言处理的基本过程01 自然语言处理的基本过程01 一.获取语料 1.语料的分类 2.数据集与语料 3.获取方法 二.预处理 1.NLTK 2.Jieba分词 3.SnowNLP 4.Pyrouge 5.Sklearn 6.常用python-based机器学习框架 三.特征工程 1.简单的特征工程 2.TF-IDF 三.模型介绍 朴素贝叶斯 线性https://www.pianshen.com/article/7788948655/