哈工大刘挺:自然语言处理中的可解释性问题人工智能刘挺神经网络自然语言处理

“知其然,亦知其所以然”是现代计算机科学家针对神经网络可解释性问题追逐努力的方向和梦想。针对自然语言处理中的可解释性问题,哈尔滨工业大学刘挺教授在2022北京智源大会报告中做了详尽的解读。

整理丨路啸秋

刘挺,哈尔滨工业大学教授,哈工大计算学部主任兼计算机学院院长、自然语言处理研究所所长

1

NLP中的可解释性

可解释的人工智能(ExplainableAI,XAI),是一种以人类可理解的方式解释人工智能系统输出结果的能力。可解释性的成功不仅取决于算法,同时还要借鉴哲学、认知心理学、人机交互等多学科的思想,令使用者及开发者更好地理解人工智能背后的决策和推理机制。

深度学习已经取得了巨大成功,但深度学习的进一步应用遇到了伦理、用户信任以及纠错等方面的挑战,尽管黑盒系统因其优越的性能得到广泛应用,但也因为其决策难以被理解所以在应用中受到限制。

可解释性是衡量人工智能系统性能的重要指标。在司法、医疗、金融等重要领域中,不可知、不可控的人工智能技术会引发争议。可解释性的研究能够提升人工智能技术的可信度,实现更加可控的推理决策。

可解释人工智能系统主要由被「解释的对象」、「解释者」以及「解释受众」三部分组成。被解释的对象即人工智能体的决策机制;解释者为负责提供解释的一方,一般会由机器自我解释,也有一部分是事后解释,包括第三方的解释系统或者人类专家;解释的受众是听取解释并试图理解的一方,包括AI系统开发者、AI使用者和受影响者、AI系统监管者等。

模型的解释可以分为两大类:

(1)透明模型,即自解释或直接解释。在做出决策或预测的过程中直接产生一些信息,呈现给用户一种解释。此时,解释和模型的预测同时产生。例如,决策树和基于规则的模型都是透明的模型。

(2)事后解释,对于预测结果需要执行额外的操作才能够解释当前系统做出决策的原因。比如利用可解释模型对复杂模型的部分输出进行建模,形成替代模型,使用可解释的替代模型解释输出。

可解释自然语言处理可以简称为XNLP,指能以可解释、可理解、人机交互的方式,与自然语言处理系统的开发者、使用者、决策者等,达成清晰有效的交流沟通。在取得人类信任的同时,满足各类应用场景对智能体决策机制的监管要求。

传统的自然语言处理方法具有可解释性,可称之为白盒技术。应用白盒技术便于用户与系统之间的交互、有利于开发者对系统的修改纠错。而深度学习模型以语言嵌入作为特征,尽管显著提高了模型的性能,但模型难以解释,可称之为黑盒技术。应用黑盒技术更容易获取更优秀的结果,但是在涉及财产和生命安全等因素的领域难以更广泛地应用。例如,性能极其优异的深度学习模型GPT-3会在如下所示的预测任务中出现错误,而研究者难以分析其做出错误决策的原因。

2

白盒透明模型设计

白盒透明模型的设计主要方法首先是特征重要性,提取特征过程当中已经埋下了后续对系统进行解释的一个非常好的伏笔。其次是溯源,比如问奥巴马的女儿有多大,基于知识图谱进行推理得到的奥巴马的女儿是18岁,那么把知识图谱推理路径展示出来就成为一个很好的解释。

刘挺老师所在实验室针对白盒系统的设计做了一个基于神经自然逻辑的多项选择问答系统,尝试用神经网络的方法执行符号推理,本质推理还是在符号层面进行推理,具有天然的可解释性。但由于符号推理本身存在一些问题,需要用神经网络的语义的表示方法去注入,使符号推理的任务更可行更强大。

系统主要针对多项选择问题,例如把grandPaOf进行拆分,可以等价推出关系是祖孙的关系,但是库里面只有grandfather这样的关系词,可以通过语义的相似度计算,把grandpa和grandfather进行合并。系统采用自然逻辑进行推理,自然逻辑是一种基于语义单调性的逻辑,有7种基本的语义关系,可以直接在文本上通过插入、删除和替换单词进行扩展、推理。比如所有动物需要水,经过操作,动物是反向蕴含狗,所有动物都需要水,所有狗也都需要水,就可以进行这样的推理。

同时系统希望采用证据推理来支持问答的任务,比如说问啮齿动物吃植物吗?有一个支持的答案或者叫证据就是松鼠是吃松子的,松鼠是啮齿动物,松子是一种植物,就可以用自然逻辑通过增删改等等方式进行替换,把推理路径找出来,这个解释自然也就成立。但在找推理路径尤其各种概念合一的过程当中,又是需要神经网络的帮助,用神经网络去进行嵌入式语义表示,更好刻画上下文,更准确的判断单词与单词之间的语义关系。

3

黑盒事后解释方法

黑盒事后解释是当前最主要的NLP解释方法。

「替代模型」是一种主流的黑盒事后解释方法,它通过学习另一个具有可解释能力的简单模型作为代理来进行解释,让替代模型的输入输出尽可能模拟原来黑盒的模型。但是这种方法的可行性也受到了一些学者的质疑。

第二种方法叫做「样例驱动」,通过识别和呈现其它与输入实例语义相似的已标注好原因或者解释的文本的实例解释对输入实例的预测,样例驱动常用于问答系统,类似于基于最近邻的方法。

第三种方法为注意力机制,例如机器翻译系统,通过注意力机制发现高亮的不同,亮度的区别确实于与注意力的强弱相对应,解释单词的翻译依据。但目前可解释性与注意力的对应关系尚无定论。

群体情绪原因发现

4

基于注意力机制的解释

基于注意力机制为阅读理解任务提供可解释性也属于「事后解释方法」。这里面主要探讨注意力机制是否能够解释预训练模型的运行机制。研究者采用了一个包含四部分的注意力矩阵,Q2代表问题到问题;P2代表篇章理解;Q2P是从问题到篇章;寻找答案的线索;P2Q是对答案进行验证。研究者分别对这几个部分进行注意力机制的分析。

一般来说,高注意力对系统的影响比较大,比如说特殊的符号,对角线的元素。但在阅读理解问题上,研究者们发现去掉单个符号影响不大,去掉多个特殊的符号在英文上性能下降比较明显,然而中文上下降不是太明显,去掉对角的元素反而可以提升阅读理解的准确率。P2Q和P2P仍然是影响结果重要性的最主要的注意力区域。

5

探针方法

研究者们使用探针方法,实现对话理解中的可解释性认证。对话当中蕴含丰富的语言现象,传统对话系统无法理解对话中的省略和指代等现象,模型产生回复的过程不可解释。而刘挺教授团队在人人对话数据中插入QA对,通过对话模型能否正确地回答问题来检验模型是否真正理解对话的语义。并由此提出了一个DEQA数据集,通过可解释的QA方式验证了主流模型无法正确理解对话中语义的问题。

6

解释要素的注入

7

无监督文本生产解释

刘挺教授团队针对阅读理解构建自解释系统,提出了一个基于迭代式动态门限机制的无监督字解释方法。通过借鉴知识蒸馏的传统做法,建立一个双子系统。阅读器负责正常训练阅读理解任务,解释器通过门机制控制输入篇章的内容量保留篇章中最重要的部分,进而使用阅读器做模型预测生成答案,使用解释器产生解释文本。最终得到的实验结果相比传统方法获得了更高的答题准确率,因此不需要以答题准确率为代价换取可解释性,在人工评价指标上也取得了较好的效果。

8

可解释性的评价

针对可解释性评价的挑战,刘挺教授团队也提出了两个针对可解释性评价的数据集,分别是可解释性阅读理解数据集ExpMRC和可解释的因果推理数据集。

灰盒方法的主要思想是在构建系统的时候嵌入可解释的要素。刘挺教授首先介绍了基于神经-符号相结合的可解释性自然语言理解。符号表示有可程序化化可解释性强等优点,而神经AI表示能力和适应能力强,刘挺教授团队尝试将两者的优点结合在一起,构造了一个名为ExCAR的因果逻辑增强的可解释因果推理框架,例如从量化宽松到房价上涨找到推理路径,利用神经逻辑网络和条件马尔可夫还原背后的因果决策机制。

基于规则挖掘的知识发现,一般用表示学习、强化学习去进行知识的发现,利用实体的描述文本和结构信息实现知识不全;利用文本模型的输出稠密化知识图谱;利用EM和ML两种方法融合文本模型和结构模型,进而实现基于分层推理的知识发现。

THE END
1.自然语言处理与Transformer模型:革新语言理解的新时代计算效率:通过并行处理整个输入序列,Transformer模型大幅提高了训练和推理的速度。灵活性和通用性:Transformer模型不仅在NLP任务中表现优异,还被广泛应用于计算机视觉、推荐系统等其他领域。第一部分:自然语言处理概述 自然语言处理(Natural Language Processing, NLP)是人工智能和计算机科学的一个重要分支,致力于使https://baijiahao.baidu.com/s?id=1803524205567050232&wfr=spider&for=pc
2.人工智能的研究热点:自然语言处理人工智能(Artificial Intelligence,简称AI)作为新一轮科技革命和产业变革的重要驱动力量,正在深刻地影响世界、改变世界。而自然语言处理(Natural Language Processing,简称NLP)已成为AI领域的研究热点,它推动着语言智能的持续发展和突破,并越来越多地应用于各个行业。 https://www.51cto.com/article/626970.html
3.为什么说自然语言处理是人工智能的核心腾讯云开发者社区机器能跟我们人类交流吗,能像我们人类一样理解文本吗,这是大家对人工智能最初的幻想。如今,它已成为人工智能的核心领域——自然语言处理(简称:NLP)。自然语言处理是一门融语言学、计算机科学、人工智能于一体的科学,解决的是“让机器可以理解自然语言”——这一到目前为止都还只是人类独有的特权,因此,被誉为人工https://cloud.tencent.com/developer/article/1087194
4.自然语言处理NLP文本分析及挖掘舆情识别人工智能智能搜索算法 产品能力 基础文本服务 NLP自然语言处理基础原子能力,提供词法、句法、篇章分析等API中的通用能力,包含分词、命名实体识别、词性标注、文本纠错等。 多语言分词:将连续的自然语言文本,切分成具有语义合理性和完整性的词汇序列,常应用于文本搜索、自动问答等领域。 https://ai.aliyun.com/nlp
5.人工智能自然语言处理技术原理介绍自然语言处理(Natural Language Processing,NLP)是人工智能领域中的一个重要分支,致力于让计算机能够理解、解释、处理和生成人类语言。NLP技术的应用范围涵盖了机器翻译、情感分析、语音识别、问答系统等多个领域,对于推动人机交互、信息检索和智能决策等方面发挥着关键作用。在本文中,我们将介绍自然语言处理技术的基本原理,https://zhuanlan.zhihu.com/p/669605397
6.人工智能编程的自然语言处理技术应用案例自然语言处理(Natural Language Processing,NLP)是人工智能领域的一个重要分支,其目的是使计算机能够理解、解释、操纵和处理人类语言。近年来,随着人工智能技术的快速发展,NLP技术在各个领域得到了广泛的应用。 二、智能客服系统 智能客服系统是NLP在商业领域中的一个典型应用。通过语音识别和自然语言理解技术,智能客服系统https://www.jianshu.com/p/81ae84e8db72
7.自然语言处理人工智能自然语言处理(Natural Language Processing,NLP )是人工智能涉及到的非常重要的技术之一,其目的是用自然语言实现人机交互,涉及到计算机科学、人工智能、语言学等众多学科。 实现人机间自然语言通信意味着要使计算机既能理解自然语言文本的意义,即自然语言理解,也能以自然语言文本来表达给定的意图、思想等,即自然语言生成。https://www.zhiding.cn/wiki-NLP
8.自然语言处理(普通高等教育人工智能专业系列教材)(豆瓣)自然语言处理是人工智能的重要分支,本书是一本自然语言处理的入门教材,主要面向高年级本科生和低年级研究生。本着理论结合实践的基本原则,本书共分为 11 章,其中第 1 章概述了自然语言处理的研究内容、发展历程、技术特色和当前现状,是概述性的一章。第 2 章是自然语言处理的编程基础,对 Python 语言及其相关模块https://book.douban.com/subject/35889856/
9.《自然语言处理(普通高等教育人工智能专业系列教材)》(冯建周著当当网图书频道在线销售正版《自然语言处理(普通高等教育人工智能专业系列教材)》,作者:冯建周 著,出版社:水利水电出版社。最新《自然语言处理(普通高等教育人工智能专业系列教材)》简介、书评、试读、价格、图片等相关信息,尽在DangDang.com,网购《自然语言处理http://product.dangdang.com/29394748.html
10.自然语言处理(NLP)解决方案IBM自然语言处理 (NLP) 是人工智能和计算机科学的一个子领域,专注于数据的标记化,即将人类语言分解为其基本组成部分。NLP 通过将计算语言学与统计机器学习技术和深度学习模型相结合,让计算机能够处理文本或语音数据形式的人类语言。词形还原和部分语音标记有助于深入理解语言,包括语境、说话者或作者的意图和情感。 https://www.ibm.com/cn-zh/natural-language-processing
11.自然语言处理(NLP)的工作原理语言模型与计算机科学和人工智能(AI)密切相关,是人工智能的一个重要分支学科——自然语言处理(NLP)的基础。人工智能的主要目标是模拟人类智能。语言是人类认知的决定性特征,对这一努力来说是必不可少的。 好的语言模型旨在理解和生成类似人类的文本,实现机器学习,其中机器理解单词之间的上下文、情感和语义关系,包括语法https://www.skycaiji.com/aigc/ai15335.html
12.人工智能如何过“语言关”?专家前瞻人工智能发展新华社北京7月23日电(记者董瑞丰)丢一块石头到水里会发生什么?人工智能可以战胜围棋大师,却会被这样的简单问题难倒——对自然语言的处理仍是一个待解难题。 23日在北京召开的第二届语言与智能高峰论坛上,业界专家就人工智能如何突破自然语言处理展开研讨,同时向公众展示了语言智能领域的创新成果。 https://news.cctv.com/m/a/index.shtml?id=ARTIMCMpys5TmawkSHp9YArK170723
13.自然语言处理入门自然语言处理?(Natural Language Processing,NLP)是一门融合了计算机科学、人工智能以及语言学的交叉学科,它们的关系如图 1-1 所示。这门学科研究的是如何通过机器学习等技术,让计算机学会处理人类语言,乃至实现终极目标——理解人类语言或人工智能①。 事实上,自然语言处理这个术语并没有被广泛接受的定义②。注重语言https://www.ituring.com.cn/book/tupubarticle/28291
14.冯洋中国科学院大学冯洋,中国科学院计算技术研究所 研究员、博士生导师、自然语言处理团队负责人、“新百星人才引进计划”入选者,计算机学会杰出会员、人工智能学会首批杰出会员。在中科院计算所获得博士学位后,先后前往谢菲尔德大学和南加州大学信息科学研究所(USC/ISI)开展研究工作。(曾)担任中文信息学会青年工作委员会副主任、计算语言学专https://teacher.ucas.ac.cn/~yangfeng
15.人工智能和自然语言处理的区别是什么人工智能(Artificial Intelligence,AI)和自然语言处理(Natural Language Processing,NLP)是两个相关但不同的概念。 以下是它们之间的主要区别: 定义和范围: 人工智能:这是一个更广泛的概念,指的是使机器能够模拟人类智能的理论、设计、开发和应用技术,包括机器学习、深度学习、计算机视觉、自然语言处理等多个子领域。 https://www.ai-indeed.com/encyclopedia/9233.html
16.自然语言处理的8个常用工具nlp自然语言处理(Natural Language Processing,简称NLP)是人工智能领域的一个重要分支,用于处理和分析人类语言。在NLP的研究和应用中,有许多强大的工具和库可供使用。本文将介绍8个常用的NLP工具,并提供相关的源代码示例。 NLTK(Natural Language Toolkit) NLTK是Python中最常用的NLP工具之一,提供了丰富的文本处理功能和算法https://download.csdn.net/blog/column/12442398/133333967