《信息科学类专业英语》课件第23章.ppt

如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

1、Lesson23IntroductiontoBioinformatics(第二十三课第二十三课生物信息学简介生物信息学简介)Vocabulary(词汇)ImportantSentences(重点句)QuestionsandAnswers(问答)Problems(问题)Bioinformaticsistheintersectionofmolecularbiologyandcomputerscience.Forsoftwaredevelopers,itsafascinatingandchallengingareainwhichtowork.I

2、nthisarticle,Iwanttointroducethisexcitingfieldandsetthesceneforthearticlesthatwillfollow.1WhatisBioinformaticsWhenmolecularbiologistsstartedtogenerateDNAsequencedata27yearsago,itwasnaturalthatcomputerscientistsandmathematicianswouldtakeakeeninterest.Here

3、inthemessy,wet,analogworldofbiologywasdigitalinformation:alinearstringoffourchemicalgroupsencodingtheentireblueprintsfortheproteinmachineryofthelivingcell.Howcouldyounotbeinterestedincrackingthatcode1Thisfieldofstudygainedarealidentity,andthenamebioinfo

4、rmatics,inthemid-1980s,asDNAsequencingbecameafundamentaltoolformolecularbiologyandsequencedatastartedtoappearinsignificantvolume.Rightfromthestart,threeconceptsemergedthatremaincentraltobioinformaticstoday.Thefirstisdatarepresentation.TheDNAinthehumangenomeis

5、notneatlyarrangedinthepristinedoublehelixweallrecognize.Itiscoatedwithproteinsthatbindtospecificsequences,whichuntwistthehelixtoallowgeneexpressionandwinditupintotightlypackedsupercoils.Farfrombeingastaticarchiveofblueprints,DNAisacomplex,dynamic,three-di

6、mensionalmolecule.AndyetwerepresentallofthisasasimplestringofthecharactersA,C,GandT(Fig.1).Fig.1DNARepresentationbycharactersThisisaremarkableabstraction.Mostoftheprocessesinvolvinggenesthatweknowabouthavebeendiscoveredusingthisgrosslysimplifiedrepresentati

7、onofreality.Itistheperfectrepresentationforcomputeranalysis,andwithoutitwecouldneverhaveapproachedaprojectonthescaleofthehumangenome.2Secondistheconceptofsimilarity.Evolutionhasoperatedoneverysequencethatweseetoday.Itconservesgenesthatencodeimportantprote

8、insandsequencesthatareinvolvedingeneregulation.Sequencesthatencodeusefulfunctionsaretransferred,likecodemodules,fromoneorganismtoanother.Becauseofevolution,similarsequenceshavesimilarfunctions.Algorithmsforcomparingsequencesandfindingsimilarregionsareatthehearto

9、fbioinformatics.Atmanydifferentlevels,theyareusedtofindgenes,determinetheirfunctions,studytheirregulationandassesshowthey,and,entiregenomeshaveevolvedovertime.Thirdistherealitythatbioinformaticsisnotatheoreticalscience;itisdrivenbythedata,whichinturnisdriven

10、bytheneedsofbiology.Relativelyfewresearchershavetheluxurytodevelopalgorithmsandtheoriesinthetraditionalacademicsense.Mostpeoplearefullyconsumedintheday-to-daymanagementandanalysisofdata.Wehavealotofdata.TheintroductionofautomatedDNAsequencingintheearly199

11、0screatedwhatwas,atthetime,atorrentofsequencedata.ButitwastheHumanGenomeProject,withitsmassiveautomation,productionlines,andmoney,thatreallyopenedthefloodgatesinthepastfewyears.3ComparetherateofgrowthofsequencedatainGenBank,theNIHsequencedatabase,toMooresL

12、aw,thatwell-knownmeasureoftechnicaladvancement,andyouwillappreciatethechallenge,facingbiology(Fig.2).Fig.2ComparingtherateofgrowthofsequencedatainGenBanktoMooresLawAndthosearejustthesequences!Microarraytechnologies,abletomeasuretheexpressionofthousandsofgenesin

13、asingleexperiment,havedevelopedoverthepastdecadeandnowproducehugeamountsofdata.Newtechniquesforlookingatgeneticvariationsinlargehumanpopulations,andforidentifyinginteractionsbetweensetsofproteinsincells,arepouringdataontofileserversaroundtheworld.Bioinformat

14、icsischargedwithmanagingandmakingsenseofallofthedata,keepingpacewithbothdataproductionandtechnologydevelopment.Theresplentyofworktogoaround.42WhataretheHotTopicsinBioinformatics2.1ComparativeGenomicsThishasthehighestprofile,thankstotheHumanGenomeProject.

15、Ithasbeen,andstillis,thefocusofahugeamountofwork.Thefirst“tier”ofgenomesequences(human,rat,mouse,andfruitfly)isnowcomplete,andthebigsequencinglabsaremovingontoorganismslikethechimpanzee,rhesusmacaque,cow,chicken,andseaurchin.Fig.3EditedscreenshottakenfromtheUC

16、SantaCruzGenomeBrowser(genome.ucsc.edu)WhythishugeefforttosequencetheentirecontentsofthezooComparativegenomics:thesameapproachtobiologyusedbyCharlesDarwin,butbasedonsequencesinsteadofthebeaksoffinches.Bycomparingthegenomesofrelatedspecies,wecanlearnatremend

17、ousamountabouthowgenomesareorganizedandhowmajorevolutionarychangestakesplace.Atthelevelofindividual,geneswecanuncovernovelmechanismsforregulationthatwerehiddenwhenwejusthadonesequencetoworkwith.Similarityiseverything!2.2SingleNucleotidePolymorphisms(SNPs)Anot

18、heravenuethatopensuponcewehavea“reference”humangenomeisthestudyofsequencedifferencesbetweenindividualsthefinedetails:whatmakesyoudifferentfromme.Itturnsoutthatthegenomeisfullofsinglenucleotidedifferences,calledpolymorphisms,orSNPsforshort.Mostofthesehaveno

19、directimpactonanything.Buttheirdistributionthroughoutthegenome,theirfrequencyinthehumanpopulation,andtheirpatternsofinheritancemakethemextremelyusefulmarkersfordifferencesthatwedocareabout.BymeasuringsetsofSNPsinthousandsofindividualsandcorrelatingthemwithth

20、eincidenceofadisease,wecanidentifywhichregionsofthegenomeareinvolvedandeventuallypinpointthegenesthemselves.Thecombinationofthesemolecularassayswithlargeclinicalstudiesofpopulationsgenerateshugeamountsofdataandawholenewsetofchallengesforbioinformatics.2.3

21、MicroarraysMicroarraytechnologiesshowuswhichgenesareturnedonindifferentcelltypesindifferentcircumstances(Fig.4).Inresponsetoinfection,forexample,certaincelltypeswillexpresssetsofgenesandsynthesizecertainproteinsthatrespondtothestress.MessengerRNA(mRNA)islikeaph

22、otocopyofablueprintthatisusedintheshoptobuildaspecifictypeofprotein.Inamicroarray,wecanattachsequencesfromarangeofgenestoaglassslideinaseriesofdots,andthenbindthemRNAextractedfromapopulationofcellsandmeasurehowmuchbindstoeachdot.Thatgivesusasn

23、apshotofwhichgenesarebeingexpressedatanygiventime.ComparethepatternsformRNAfrom,forexample,normalbreasttissueandfromabreasttumor,andyoucanidentifyproteinsthatareonlypresentinthetumor.Thoseproteinsarepotentialtargetsforcancertreatments,vaccines,andotherthera

24、peutics.Fig.4Sectionofamicroarrayimage,courtesyofEricJeffery,CorixaCorporation2.4SystemsBiologyThegenomegivesusallofthegenesinanorganism,andmicroarraystelluswhichsubsetisexpressedinaparticularbiologicalprocess.Nowthebottleneckinunderstandingbiologyisshiftingt

25、otheworldofproteinsandtheinteractionsbetweenthem.Thetraditionalapproachofdissectingoutindividualinteractionswiththehelpofmutationsandinhibitorsjustdoesntscale.Thatiswheresystemsbiologycomesinwithaslewofnoveltechnologiesaimedatseeingthebigpictureofeveryth

26、inggoingoninacell.Newadvancesinmassspectrometryhaveallowedthisestablishedchemicalanalysistechnologytoidentifythecomponentsofcomplexmixturesofproteins.Inventivechemicallabelingtechniquesprovideinsightintothetransientinteractionsbetweendifferentproteinsinthecell

27、.Thisbundleofnewtechnologiesiscalledproteomics.Theintegrationofalloftheseresultswithgeneexpressiondataandthecollectiveknowledgeofcellbiology,containedinthescientificliterature,becomesanotherhugechallenge.Thisisleadingtoexcitingworkintextualanalysis,pathwaymode

28、ling,andnetworkvisualization.2.5StructuralBiologyWhileourabstractionoftheDNAsequenceworksremarkablywell,intheworldofproteinsthenuancesofthree-dimensionalstructureareeverything.StructuralbiologistsdeterminethestructureofproteinsusingX-raycrystallographyandnuclearma

29、gneticresonance,aslewofheavynumericalmethods,andalotofcomputing.Thisisahugefieldinitsownrightthatpredatesbioinformaticsbyseveraldecades.Itfocusesonthedetailsofstructure,thedynamicsofmolecularmotion,andthespecificinteractionswithdrugsandotherproteins(Fig.5).B

30、ioinformatics,withitsfocusonhugevolumesofdata,hasoftenhadanuneasyinterfacewithstructuralbiology;“quantityversusquality”somemightsay,butthatdistinctionisbecomingeverymoreblurredasallofthesedatasourcesbecomemoreintegrated.Fig.5Nitrogenasestructure1CP2displayedin

31、MacPyMol()2.6SoftwareinBioinformaticsTwomainfactorshaveshapedthecurrentlandscapeofbioinformaticssoftware.Asalreadymentioned,thefieldhasbeendrivenbythemassiveamountofdataandtheresearchprojectsthatgenerateit.Asaresult,mostpeopleinbioinformaticsworkonveryfocuse

32、dprojectsandfewhavetheluxurytositbackandwritetheidealprogramforgeneprediction,forexample.Inaddition,thetechnologiesusedinthelab,andthedatatheyproduce,haveevolvedveryrapidly.Thathasmadeitverydifficulttocommitalotofresourcesandtimetospecificpiecesofsoft

33、ware.Thelifespanofasoftwareprojectisoftenquiteshortandtheleadtimebeforedeploymentisminimal.Beingabletounderstandtheessenceofaproblemandhackupaquicksolutionthatgetsthejobdonearecriticalskillsforagoodbioinformaticsdeveloper.Aclassicexampleisthegenomeas

34、semblerwrittenbyJimKentatUCSantaCruz.Excellentsoftwarealreadyexistedforassemblingthefragmentsofdataproducedbysequencinginstrumentsintolargeblocks,butitcouldnothandlethescaleofthetaskthattheHumanGenomeProjecthadcreated.Ratherthantrytomodifyexistingcode,it

35、madesenseforKenttostartfromscratchandbuildsomething,inveryshortorder,thatwastailoredtothetaskathand.Morethanaquickhack,butalotlessthanacomplete,polishedproduct,Jimssoftwareassembledthehumangenome.Refined,maturesoftwarepackagesusuallyemergefromresearchgroup

36、swithadirectbioinformaticsfocus,asopposedtoplayingasupportrolein,say,agenomecenter.Ofallofthesoftwareoutthere,the“killerapp”inbioinformaticshastobeBLAST,thesuiteofsequencecomparisontoolsfromNCBI,theNationalCenterforBiotechnologyInformationattheNIH.TheBLASTt

37、eambuiltaveryfastsequence-comparisonenginethatcouldsearchtheentirecontentsofGenBankinseconds.Overtheyears,theyhaveimprovedperformanceandextendedtheiralgorithms,buthavealwaysretainedtheirfocusonwhattheydowell.Asaresult,everymolecularbiologistthathaseverlooke

38、datasequencehasusedtheNCBIBLASTserver.1.bioinformaticsn.生物信息学。2.DNA(Deoxyribonucleicacid)n.脱氧核糖核酸,是染色体的主要化学成分,DNA是一种分子,包含遗传指令,以引导生物发育与生命机能运作,喻为“蓝图”或“食谱”。带有遗传信息的DNA片段称为基因,其他的DNA序列,有些直接以自身构造发挥作用,有些则参与调控遗传信息的表现。3.genomen.基因组,染色体组。Vocabulary4.pristineadj.原始状态的,未受损的;新鲜而纯净的,清新的;原始的,远古的。5.pri

39、stinedoublehelix原始双螺旋。6.profilen.剖面,侧面,外形,轮廓。7.chimpanzeen.黑猩猩。8.rhesusmacaquen.恒河猴。9.seaurchinn.海胆。10.finchn.雀科小鸟。11.pinpointn.极小的范围;光点vt.准确地找出或描述adj.非常精确的。12.assayn.化验,试金;分析,试验,化验报告,试样,试料vt.化验,试验,检验,分析评价。13.tumorn.瘤。14.vaccineadj.牛痘的;种痘的;疫苗的。15.therapeuticsn.治疗学,疗法。16.dissectv.把解

40、剖(动植物等),切开仔细研究,把切成碎片。17.spectrometryn.物光谱测定法,度谱术。18.proteomics指蛋白质的大规模研究,特别是结构和功能,这个1997年出现的新词是“protein”和“genome”的结合。19.resonancen.共鸣,回声,反响,中介,谐振,共振,共振子,极短命的不稳定基本粒子。1Hereinthemessy,wet,analogworldofbiologywasdigitalinformation:alinearstringoffourchemicalgroupsencodingtheentireb

41、lueprintsfortheproteinmachineryofthelivingcell.Howcouldyounotbeinterestedincrackingthatcode在这个杂乱、潮湿和模拟的生物世界里,竟然有数字信息四个化学群组的线性串,用于对生命细胞的蛋白机制的蓝图进行编码。你怎么能对破解这些编码不感兴趣呢?ImportantSentences2Thisisaremarkableabstraction.Mostoftheprocessesinvolvinggenesthatweknowabouthavebe

42、endiscoveredusingthisgrosslysimplifiedrepresentationofreality.Itistheperfectrepresentationforcomputeranalysis,andwithoutitwecouldneverhaveapproachedaprojectonthescaleofthehumangenome.这是一个非常好的抽象。大多数已经发现的涉及到基因的处理都是利用这个简化的表示进行的。它为计算机分析提供了完美的表示,而如果没有它,我们永远不会开展人类基因组这样大规模的计划

43、。3Wehavealotofdata.TheintroductionofautomatedDNAsequencingintheearly1990screatedwhatwas,atthetime,atorrentofsequencedata.ButitwastheHumanGenomeProject,withitsmassiveautomation,productionlines,andmoney,thatreallyopenedthefloodgatesinthepastfewyears.我们有大量的数据

45、)Accordingtothetext,whichsentencefollowsiswrong()A.Bioinformaticsisacrossdisciplineofmolecularbiologyandcomputerscience.B.Bioinformaticsisacrossdisciplineofmolecularbiologyandsoftware.C.Bioinformaticsisafascinatingareaforsoftwaredeveloper.D.Bioinformaticsisachall

46、engingareaforsoftwaredeveloper.QuestionsandAnswers(2)Thethreeconceptsemergedthatremaincentraltobioinformaticstodayexclude().A.datarepresentationB.theconceptsimilarityC.bioinformaticsisnotatheoreticalscienceD.algorithmsforcomparingsequences(3)Thereasonsforalgorithmsofc

47、omparingsequencesandfindingsimilarregionsareattheheartofbioinformaticsdonotinclude().A.algorithmsareusedtofindgenesB.algorithmsareusedtostudyregulationofgenesC.algorithmsareusedtoassessevolutionofentiregenomesovertimeD.algorithmsareusedtodetermineentiregenom

48、es(4)AccordingtothesectionofSoftwareinBioinformatics,whichstatementfollowsiswrong()A.Twomainfactors,whichhaveshapedthecurrentlandscapeofbioinformaticssoftware,arethefieldhasbeendrivenbythemassiveamountofdataandtheresearchprojectsthatgenerateit.B.Alotofpeopl

49、ehavewrittentheidealprogramforgeneprediction.C.Thelifespanofasoftwareprojectisoftenquiteshortandtheleadtimebeforedeploymentisminimal.D.TheBLASTteambuiltaveryfastsequence-comparisonenginethatcouldsearchtheentirecontentsofGenBankinseconds.1.WhatisBioinformatics,whatistheobjectandresearchmethodsofit2.DoyouthinkthatyouwilldosomeresearchworksonBioinformaticssometimelaterProblems

THE END
1.惊!这份英语考研笔记有点“神”距离同学们考研不足二十天,大家都准备好了吗?对于英语科目给大家总结了一套有针对性的冲刺方法,快来学习吧! 01 基础积累 单词一定是所有题型的入门槛,只有掌握足够多的单词才能读懂文章的内容,理解作者意图。如果不理解很多文章中的主旨词,就很可能错意文章主旨。还有最后十多天,基础不扎实的同学就可以着重学习大纲https://tsg.xaau.edu.cn/info/1058/4917.htm
2.图书馆情报与文献学:图书馆学试题预测(强化练习)题库试看结束后微信扫下方二维码即可打包下载完整版《★图书馆、情报与文献学》题库 手机用户可保存上方二维码到手机中,在微信扫一扫中右上角选择“从相册选取二维码”即可。题库试看结束后微信扫下方二维码即可打包下载完整版《图书馆、情报与文献学:图书馆学》..http://www.91exam.org/exam/87-4535/4535634.html
3.资源讲座丨Flipster&ProQuestResearchCompanion图书馆讲座 本周三下午2点至3点,图书馆为大家介绍英文电子杂志阅读平台Flipster和数据库ProQuest Research Companion,帮助大家更好地查找、评估和利用信息资源,讲座安排如下,欢迎同学们踊跃参与。 时间:12月11日 星期三 14:00-15:00 讲师:图书馆员(英文https://mp.weixin.qq.com/s?__biz=MjM5MDc3MTE2MQ==&mid=2648622618&idx=1&sn=74f220884eae2cd4e39b1ac738eebde2&chksm=bfadaf5dc5d539a85a26b4b4c2774fc04aaa4adb201d9feed801938113a30ad5f394a8955bdd&scene=27
4.图书馆管理系统数据字典经管文库(原现金交易版图书馆管理系统数据字典 https://bbs.pinggu.org/thread-13117753-1-1.html
5.游戏玩家的知识宝库,图书馆图书分类与编号的奥秘在浩瀚的知识海洋中,图书馆无疑是一个宝藏之地,无论是对于文学爱好者、历史研究者,还是对于游戏开发人员,图书馆都是获取灵感和知识的绝佳场所,而要在这片知识的海洋中轻松找到自己所需的宝藏,图书的分类与编号就显得尤为重要,就让我们一起探索图书馆图书分类及编号的奥秘。 http://www.honsei.com.cn/yxgl/26094.html
6.在职考研:图书情报专业考研考什么?考数学吗?图书情报专业主要学习图书学,情报学,信息管理等专业,那么这个专业还有很多科目,英语,政治,计算机等都有涉及,毕业后工作也很好找,图书馆,政府部门,咨询类工作。 01英语一 图书情报专业考研主要考察英语一。根据参考内容,图书情报专业的初试科目包括政治、英语一和专业课。 https://kaoyan.eol.cn/zaizhi/article/p944
7.图书馆学专业英语出版社:湖南省中心图书馆委员会 出版年:1986 作者:张若衡 学科:文化、科学、教育、体育,语言、文字学 资源类型:图书 细分类型:中文文献 收藏单位馆藏地在架状态索书号 华南植物园植物园馆藏在架上37.6/549 华南植物园植物园馆藏在架上37.6/549 武汉文献中心流通部在架上41.68/Z281 https://www.las.ac.cn/front/book/detail?id=b85486707dd1d4ae62e8ff71c60af360
8.图书馆学情报学教育的英文翻译图书馆学情报学教育英语怎么说海词词典,最权威的学习词典,专业出版图书馆学情报学教育的英文,图书馆学情报学教育翻译,图书馆学情报学教育英语怎么说等详细讲解。海词词典:学习变容易,记忆很深刻。http://dict.cn/%E5%9B%BE%E4%B9%A6%E9%A6%86%E5%AD%A6%E6%83%85%E6%8A%A5%E5%AD%A6%E6%95%99%E8%82%B2
9.华中师范大学情报学考研招生专业目录华中师范大学研究生院研究方向01.情报学理论与方法 02.信息组织与检索 03.信息化管理与电子政务 04.竞争情报与决策支持系统 05.知识产权 06.信息咨询与服务 07.信息政策与管理 初试科目①101 思想政治理论 ②201英语一或202俄语或203日语 ③630信息管理学基础 ④872图书馆学情报学理论与方法 http://www.chinakaoyan.com/graduate/admission/schoolID/605/id/11343.shtml
10.图书情报专业是干嘛的图书情报专业是指图书馆管理员业务学科和情报信息学科结合的一门专业。图书情报专业主要学习图书馆学、情报学、档案学,其中既包括“信息”又涉及“管理”。图书情报专业是为适应新形势图书情报事业发展对图书情报专门人才的迫切需求,完善图书情报人才培养体系,创新图书情报人才培养模式,提高图书情报人才培养质量,特设置图书https://yswxk.com/qa-detail/6acc9f841dc311ef87b2fa163e1970d8
11.图书馆学专业介绍当然,如我在最前面所说,统属于图书情报领域的专业在研究生时代大致和基础图书馆学已经脱离,有情报学,信息资源管理,管理工程,知识产权方向等可供选择。当然,有些同学考研去了新闻,编辑出版,法学,甚至计算机方向这都与人家自身努力有关。 (提一笔,以前拥有图书馆学的专业并不多,后来大学扩招以后,有不少学校开设了https://www.douban.com/group/topic/12169752/
12.图书馆馆员素质分析12篇(全文)探索意识是公共图书馆馆员不断提高业务素质与科研水平的基石。探索意识是公共图书馆馆员提高现代化信息服务业务素质和科学研究的必备品质。从个性心理品质来看, 公共图书馆馆员在强烈的事业心的推动下, 对专业无比热爱, 有浓厚的兴趣和创新精神。他们能够找准社会和图书馆学情报学发展方向, 能够抓住图书馆学情报学主要https://www.99xueshu.com/w/ikeybdk8gc96.html
13.招人!社科文献2020年春季招聘澎湃号·政务澎湃新闻1.本科及以上学历,情报学、图书馆学、信息管理等相关专业; 2.熟悉数据库与知识库的内容组织方式、知识组织与管理、信息检索相关知识与技能,了解数据分析与自然语言处理技术; 3.熟悉互联网应用,了解数字出版行业者优先; 4.工作认真负责、积极主动,执行力强,有较强的学习能力和团队协作意识;5.具备良好的沟通表达能力https://www.thepaper.cn/newsDetail_forward_6201351
14.2022年武汉大学图书情报(MLIS)项目介绍武汉大学信息管理学院,本科教育设有图书馆学、信息管理与信息系统、档案学、编辑出版学、电子商务、数字出版6个本科专业。学院设有7个博士学位点(图书馆学,情报学,档案学,信息资源管理,出版发行学,管理科学与工程,电子商务)和8个硕士学位点(图书馆学https://mpaccky.net/a/tushuqingbao/20210126/5105.html
15.武大:70年学科专业调整的奋进之路武汉文华图书专科学校整体并入武大,发展为国内独具特色和国际上有较大影响的图书馆学系,图书馆学情报学现已成为武大的一大亮点学科。 调整后期,虽撤销了武大法律学系、恢复了武大哲学系和外文系英语专业,理科也增设过少许新专业,但武汉大学的文理科学科专业结构和文理科综合大学的性质未变。https://m.haiwainet.cn/mip/3542303/2019/1104/content_31657779_1.html
16.图书馆学情报学专业期刊图书馆探索图书馆学、情报学类核心期刊表 本表内容引自北大版《中文核心期刊要目总览》2004年版 说明:与2000年版相比,除名次变化外,《现代情报》替代《图书与情报》. 序号 刊名 序号 刊名 1 中国图书馆学报 10 图书馆论坛 2 图书情报工作 11 现代图书情报技术 3 大学图书馆学报 12 情报资料工作 4 情报学报 13https://www.xmlib.net/xtxh/tsgts/200906/t20090621_116677.htm