在行业巨头地位稳固的情况下,航空发动机行业逐步形成了“主承包商-供应商”发展模式。
(1)“主承制商-供应商”模式概述
航空发动机的研发生产是一项周期长、投资大、涉及面广的系统工程,其供应链涵盖从原材料冶炼到复杂产品系统装配集成的全产业链,根据供应商的规模及其所提供的产品和服务的特性和预期用途,可将主供模式进一步细分为四个层面,四个层面包括:
在主供模式中,大多数供应商不再是按图生产的配套企业,而更多的是主制造商的风险收益合作伙伴的角色。供应商从产品研制的初始的开始阶段就参与项目,根据与主制造商签订的有关知识产权、风险投资、成本收益分配方案等协议规定的分工原则,采取前端进入、全程合作、资源共享、风险共担、利益共享的模式,与主制造商建立起以产品纽带的、全方位的、关系密切的、高度集成的战略性合作伙伴关系。
采用主供模式的主制造商,专注于“产品创新”、“工程设计”、“供应商管理”、“产品装配集成”、“产品交付和服务”等价值链的前端和终端,将资源和精力聚焦于市场和客户对接和产品设计等关键环节,以提高应对市场需求变化、产品技术创新的能力。相应的,主供模式下的供应商,需要具备足够的工程设计、工艺设计的能力和经验,以完成零件甚至部件的细节设计,工艺开发和制造交付工作,支撑主制造商的产品研发和装配交付,以及产品交付后支持。在主供模式下,从项目研制的启动阶段主制造商和供应商就开始共同研发和制造产品,形成一个完整的生产链条。主制造商变成了“大规模供应链的集成商”,它将其供应链上的供应商整合成一个组织严密的系统,通过利用现代化的手段和工具保持覆盖整个供应链的准确、及时的信息交换能力,快速反应能力和高效的沟通。为了与供应商建立长期互惠合作的战略伙伴关系,主制造商放弃了自身一部分非核心业务和能力,这也将意味着主供模式下的主制造商与供应商的沟通协调,不再仅仅限于采购与销售之间的窗口,还涉及工程、制造、质量检验等方方面面。
主制造商和各层面的供应商共同开展航空装备的研发生产,使主制造商得以在全球范围内合理的利用和配臵资源,控制生产和开发成本。
(2)国外“主承制商-供应商”模式介绍
在打造行业巨头的同时,航空发动机行业逐步形成了主承包商-供应商发展模式,任何一家主流发动机公司都只是前台,他们的身后则有一列长长的供应商名单。出于政治和商业的考虑,任何一家主要发动机公司都将大量的生产工作甚至一些零部件/子系统的研发工作转包出去,以此提升合作关系井分担技术及商业风险。
以罗〃罗公司为例,公司从2004年开始就只生产其最终产品所以零部件中附加值最高的30%,而将余下的70%转包出去,从而在风险可控的前提下,尽可能地降低发动机全部零件的制造与采购成本。罗〃罗认为具有竞争力的核心零部件必须自行生产;非核心零部件如果有足够的竞争力也会自行生产;竞争性不强的核心零部件生产必须受控,即在合作伙伴企业或合资企业中生产;不是核心零部件,竞争性又不高的零部件则完全可以进行外部采购。
基于“主承制商-供应商”商业模式的发展方向,GE、RR和PW等发动机公司已经建立了完善的全生命周期的供应商管理体系和实施重点。供应商管理体系包括了供应商寻源、准入、合同管理、过程控制、绩效管理和培育发展等6部分,从寻源到培育的全过程中施行全面的监督、考核和动态管理,实现产品质量、成本和交付进度的有效管理。
(3)国内主机厂供应商体系介绍
中国航发商发建立了面向市场化的开放的三级供应体系,按照产品产业链配臵资源。积极引入行业外力量包括民营企业、各类科院院所参与研制工作,形成以市场为导向、企业为主体、各类科研资源共同参与的协同创新体系,撬动国内外各级各类资源为我所用,实现共创共享、风险与利益共担的民用航空发动机主制造商与供应商的分工合作机制。从中国航发商发官网披露的供应商分布来看,国内供应商方面,已经聚集了来自国内17个省/市的100余家系统及单元体、关键零部件设计、制造试验合作伙伴及供应商;国外供应商方面,有来自16个国家的69家潜在供应商有意承担系统及单元体、关键零部件设计、制造、试验工作。
二、军民融合推进,航发产业链逐步开放
1、中国航发集团是我国航空发动机研制的核心
(1)中国航发集团产品谱系完整,下属上市公司分工明确
(2)相较国外巨头仍有巨大发展空间
从收入构成上来看。按最终客户可分为军品收入与民品收入,按产品类型又可分为整机收入与维修服务收入。目前,国外行业龙头的下游客户均以民品收入,军品收入仅占到总收入的20-30%。此外,国外龙头的业务较为成熟,一般而言发动机整机收入与后续的维修服务收入大致相当,在总收入中占到50%-60%,其中比较特殊的是由于P&W公司新型军用发动机F135刚进入批量交付初期,目前维修业务占比相对较低。与国外行业巨头相比,目前我国民用航空发动机市场还是一片空白等待开拓。同时目前军品生产任务繁重,维修服务能力研制不足,预计维修业务占比仅20%。同时目前我国军机中仍有一大部分使用的是进口发动机,未来仍有大量国产替代的需求空间。我们认为,随着我国航空发动机产业逐步成熟,成熟型号进入批产阶段,未来将有充足的发展空间,强烈看好我国航空发动机产业的发展前景。
从盈利能力上看,GE凭借其在民用市场绝对的领先优势,盈利能力远超行业平均,RR公司则因为民用发动机技术故障问题,近年来民用航空发动机业务经营状况较差。而航发动力相较国外龙头,在营业利润率上长期偏低。航发动力在人均产值、资产利用率上相较国外明显偏低,我们认为,国内企业在经营效率上仍有提升空间。
2、军民融合稳步推进,打造开放共享的航发供应链体系
军民融合就是把国防和军队现代化建设深深融入经济社会发展体系之中,全面推进经济、科技、教育、人才等各个领域的军民融合,在更广范围、更高层次、更深程度上把国防和军队现代化建设与经济社会发展结合起来,为实现国防和军队现代化提供丰厚的资源和可持续发展的后劲。美国建立的国防科技工业体系即是“军民融合”的一个典型。美国国会的一份研究报告显示,军民融合给美国国防部每年节约300亿美元,相当于其采办费总额的20%以上。
为推动军民结合产业集聚化、规模化发展,工业和信息化部自2009年起,依托国家新型工业化产业示范基地创建工作,分批次开展了国家级军民结合产业基地的培育和认定。2010年1月至2018年12月,共有8个批次,累计36个国家级军民结合产业基地落地,分布于22个省份及直辖市。中国航空发动机集团近几年深入落实军民融合发展战略,推进军民融合的深度发展。以构建“小核心、大协作,专业化、开放型”的科研生产体系为目标,重新定义集团产业能力体系,做强核心能力,做优主业能力,放开和退出一般能力。对外开展多维度互利合作,促进开放共享、结构升级。强力推动区域经济合作,带动优化产业布局。打造具有国际竞争力的航空发动机供应链体系。
2021年4月,航亚科技发布《关于航空发动机关键零部件产能扩大募投项目增加投资规模、变更实施主体、方式及地点的公告》。公告提到,公司根据客户要求、产品分线以及公司的战略布局,为便于更好地与国内客户进行技术交流和沟通,及时响应客户需求,充分发挥公司现有资源的整合优势、降低管理和运营成本,公司将本募投项目部分转移到贵阳,由公司的控股子公司贵州航亚科技有限公司实施。变更后的募投项目有利于提高公司运营效率、优化资源配臵,适应公司中长期发展战略与研发投入计划。贵州航亚的股权结构为:航亚科技持股比例为70%;中国航发资产管理有限公司持股比例为30%。经营范围为:航空发动机零部件、燃气轮机零部件、精密机械零部件的研发、生产、销售;产品特征特性检测服务。
2021年11月,图南股份发布《关于全资子公司投资建设航空用中小零部件自动化加工产线项目的公告》。公告提到,为落实公司战略发展规划,完善产业布局,拓宽业务范围,满足下游领域日益增长的市场需求,提升公司的整体竞争力和盈利能力,公司拟通过全资子公司沈阳图南精密部件制造有限公司(简称沈阳图南)在辽宁省沈阳市大东区投资建设“航空用中小零部件自动化加工产线建设项目”,项目计划投资总额为16,000万元。项目建成达产后,将形成年产50万件精密零部件的加工生产能力,形成完整的航空零部件的研发与制造业务能力,完善公司产业布局,拓宽公司产品链,实现协同效应,增强公司市场竞争力。
3、外协加工:受益航发产业链放开,零部件加工快速发展
近年来,受益于国家“两机”重大专项的落地,以及军民融合的深入推进,航空发动机产业链正在逐步放开,形成了“小核心、大协作、专业化、开放式”的科研生产体系。在这种背景下,航空发动机主机厂专注于做强核心能力,做优主业能力,而将零部件的外协加工作为降低研制经营风险、缩短研制周期的重要手段。民营企业也正在逐步成为一支不可忽视的力量。当前民营企业主要从零部件切入航空发动机领域,且多为同国际巨头合作,许多企业利用灵活的机制,引进国际知名专家队伍,定制国际先进的专业化设备,在高温合金材料制备、精密铸造、叶片机加等方面承担了多项航空发动机和燃气轮机科研生产任务。以无锡地区为例,受益于航空发动机产业链放开,无锡地区涌现了无锡航亚科技股份有限公司、江苏隆达超合金航材有限公司、江苏永瀚特种合金技术有限公司、无锡润和机械有限公司等优秀民营企业,这些企业利用灵活的机制,引进国际知名专家队伍,定制国际先进的专业化设备,在高温合金材料制备、精密铸造、叶片机加等方面承担了多项航空发动机和燃气轮机科研生产任务。无锡地区已初步形成了“两机”领域铸造和锻造叶片较完整的产业链条,呈现出良好的发展态势。
(1)锻造类
锻造是指通过加压设备及模具,使钢、钛合金、铝合金及其他高温合金胚料产生变形达到目标尺寸和形状的工艺。锻造最大的特点在于成形和改性(机械性能和内部组织的改善),即在同等材料的条件下,锻造加工可获得致密的金属组织,因此锻件的力学性能一般优于铸件和焊接件。航空发动机总质量的30%~45%都是锻件,锻件的价值量大概占发动机总价值的15%~20%。按照工艺的不同,锻造技术又可分为自由锻、模锻和精锻。
(2)铸造类
铸造是将液体金属浇铸到与零件形状相适应的铸造空腔中,待其冷却凝固后,获得零件或毛坯的方法。航空发动机涡轮叶片和涡轮后机匣等采用铸造工艺。涡轮叶片的材料由等轴晶铸造高温合金、定向凝固柱晶高温合金发展到单晶高温合金。涡轮叶片结构设计也由简单实心结构发展到气冷多腔道的空心结构。涡轮叶片的铸造一般采用熔模铸造技术。熔模铸造作为一种近净成形工艺,广泛应用于航空发动机涡轮叶片的制造过程中,可以制备出尺寸精度高、表面粗糙度小、外形及内腔结构复杂的薄壁叶片零件。目前熔模铸造过程主要可以分为以下几个流程:型芯制备、蜡膜制备、型壳制备、型壳脱蜡、熔炼浇注、脱壳清理、铸件切割、铸件脱芯、检验后合格入库。
4、中国航发网上商城:航发产业链放开和转型的积极尝试
以“小核心、大协作”发展思路为指引,中国航发高度重视供应商管理工作。中国航发网上商城,是集团在贯彻军民融合国家战略、做好供应链管理转型升级和推动采购模式创新方面的重要尝试。网上商城建立了与航空发动机科研生产供需对接的电子平台,可引导更多优势民营企业、优质社会资源进入航空发动机科研生产和维修领域,推动航空发动机产业转型升级;也有利于信息共享,推动阳光采购、合规采购、高效采购、低成本采购。截至2021年底,中国航发网上商城注册的供应商会员数达到两万五千多家,上线之后累计交易笔数达到42万笔,累计的交易金额达到775.5亿元。
三、航空发动机产业链情况
1、航空发动机研制流程
航空发动机的研制主要分成论证、方案、工程研制、设计定型、生产定型、批量生产、使用保障这七个阶段。在这七个阶段中,又可以进一步细分成不同的流程、子流程和步骤。
我国在研、在役航空发动机的落后,不仅仅是某一单项技术的落后,航空发动机研发体系的不健全、对正向研制流程的不清楚是造成落后的重要原因之一。要破解航空发动机的发展难题、振兴我国航空发动机产业,必须建立健全基于系统工程的航空发动机研发体系,认真梳理航空发动机产品正向研发流程,建立正向研制流程驱动的航空发动机标准体系,系统地提高我国航空发动机的研制能力,保障自主研发。
2、航空发动机价值量拆分
(1)航空发动机在飞机的价值量占比
(2)航空发动机全寿命周期费用拆分
航空发动机全寿命周期要经历研发、采购、使用维护三个阶段。研发阶段又分为设计、试验、发动机制造、管理等环节。在全寿命周期中,研发、采购、维护的比例分别为10%、40%、50%左右。使用维护阶段的费用占比最高。该阶段又分为更新零部件、维修服务两部分。
(3)航空发动机制造成本拆分
航空发动机的制造成本主要由原材料成本和劳动力成本这两大部分组成,其中,原材料成本占比40%-60%,劳动力成本占比25%-35%。航空发动机使用的原材料主要有钛合金、高温合金,钛合金主要用在发动机冷端部件,高温合金主要用在热端部件及压气机后面级温度较高的部分。两者价值量占比分别在30%和35%左右。发动机应用的其他原材料包括铝合金、钢等,占比在35%左右。
(4)按航空发动机部件价值拆分
航空发动机由几大单元体和子系统组成,单元体包括风扇增压级、高压压气机、燃烧室、高低压涡轮、喷管等,子系统包括控制系统、机械系统等。航空发动机有很多种不同的类型和使用场景,不同类型的发动机,部件构成会有区别。比如,涡喷发动机和涡扇发动机相比,由于涡喷发动机没有外涵道,则其风扇及外涵喷管的价值量占比就为0;同一类型不同使用场景的发动机,部件构成也会有所区别。比如,同样是涡扇发动机,加力燃烧室是战斗机用涡扇发动机的配臵,民用发动机则鲜少有这种配臵。因此,在对航空发动机部件价值进行拆分时,需要具体机型具体分析,不能一概而论。总体而言,发动机热端部件的价值量占比高于冷端部件。以美国军用F100和F101发动机为例,热端的燃烧室+高低压涡轮+加力燃烧室和喷管的价值量占比接近50%。
3、航空发动机产业链梳理
航空发动机制造产业链从上游到下游可分为原材料、零部件、单元体/分系统、总装。
(1)原材料
航空发动机是在高温、高压、高速旋转的恶劣环境条件下长期可靠工作的复杂热力机械,在各类武器装备中,航空发动机对材料和制造技术的依存度最为突出,航空发动机高转速、高温的苛刻使用条件和长寿命、高可靠性的工作要求,把对材料和制造技术的要求逼到了极限。材料和工艺技术的发展促进了发动机更新换代,如:第一、二代发动机的主要结构件均为金属材料,第三代发动机开始应用复合材料及先进的工艺技术,第四代发动机广泛应用复合材料及先进的工艺技术,充分体现了一代新材料、一代新型发动机的特点。在航空发动机研制过程中,设计是主导,材料是基础,制造是保障,试验是关键。从总体上看,航空发动机部件正向着高温、高压比、高可靠性发展,航空发动机结构向着轻量化、整体化、复合化的方向发展,发动机性能的改进一半靠材料。据预测,新材料、新工艺和新结构对推重比12~15一级发动机的贡献率将达到50%以上,从未来发展来看,甚至可占约2/3。因此,先进的材料和制造技术保证了新材料构件及新型结构的实现,使发动机质量不断减轻,发动机的效率、使用寿命、稳定性和可靠性不断提高,可以说没有先进的材料和制造技术就没有更先进的航空发动机。
1)钛合金
钛具有密度小、比强度高、导热系数低、低温性能好、耐腐蚀能力强、生物相容性好等突出特点,被广泛应用于航空、航天、舰船、兵器、生物医疗、化工冶金、海洋工程、体育休闲等领域,被誉为“太空金属”、“海洋金属”、“现代金属”和“战略金属”。钛合金是以钛为基加入适量其他元素,调整基体相组成和综合物理化学性能而形成的合金。与航空发动机常用的高温合金、钢等金属材料相比,钛合金具有低密度、高比强度、抗疲劳、耐腐蚀、工作温度范围宽等性能优势,非常适合航空发动机的使用和服役需求。减重对提高在钛合金耐热能力范围内,航空发动机部件多数选用钛合金材料,集中用于风扇、低压压气机和高压压气机的叶片、盘、整体叶盘、轴颈、盘轴、机匣等关键件或重要件,以及各类管路、紧固件等。目前,钛合金在先进航空发动机上的用量约占整机重量的25%~40%,使用温度从进气口的大气温度到接近600℃,对减轻发动机结构重量、提高推重比(或功重比)、降低耗油率等起到了关键作用。
2)高温合金:制造先进发动机的基石
3)复合材料
从发动机所用材料的趋势来看,碳纤维复合材料、陶瓷基复合材料、钛铝化合物、金属基复合材料的用量占比在不断提升。复合材料的重量轻、强度高等材料特性,很好地契合了航空发动机高推重比、低耗油的发展趋势,用复合材料替代传统材料,可以起到显著的减重效果。因此,复合材料在航空发动机领域逐渐得到应用,且应用前景广阔。目前航空发动机上使用最广泛的就是树脂基复合材料、陶瓷基复合材料和金属基复合材料。以陶瓷基复合材料为例,从2015年起,GE公司开始在GE9X上开展包含燃烧室火焰筒内外环第一级高压涡轮外环、第二级涡轮导向器、涡轮转子叶片的陶瓷基复合材料部件试验,来验证整套热端部件的功能性和耐久性。发动机的陶瓷基复合材料涡轮转子叶片能够实现叶片减重2/3,耐温提高20%,对耗油率改善的贡献率达到30%;而使用陶瓷基复合材料的燃烧室火焰筒能以更少的冷却空气量应对更高的温度,改善发动机热效率。
(2)零部件
航空发动机由几大单元体和子系统组成,单元体包括风扇增压级、高压压气机、燃烧室、高低压涡轮、喷管等。单元体由各种零组件组成。新一代航空发动机总共有3万多个零件,涉及230多种不同标准的材料。
航空发动机零组件具有如下特点:1)零、组件种类众多;2)难加工材料多;3)零组件结构复杂;4)零件加工精度高;5)多种冷却小孔;6)零件表面特种工艺要求多。
1)叶片类
叶片是航空发动机关键零部件之一,直接决定发动机性能、安全与寿命。按照叶片的所处部位,叶片可以分为风扇叶片、压气机叶片和涡轮叶片;对于涡扇发动机,压气机叶片根据所在部位的不同又分为低压压气机叶片和高压压气机叶片。按运动方式的不同,叶片又可以分为转子叶片(工作叶片,简称动叶)和静子叶片(简称静叶,风扇和压气机的静叶称作整流器叶片,涡轮的静叶称作导向器叶片)。为了完成整流作用或导向作用,静叶和动叶弯曲方向相反。
叶片的作用在于通过与发动机腔体配合形成空气或燃气截面及方向的不断变化,与主轴或涡轮盘等配合实现燃气的高温压缩,保证燃气的高速流动并转换成所需要的飞机运动动力。叶片的制造量占整机制造量的三分之一左右,是发动机中数量最大的一类零件。压气机叶片级数较多,每台发动机压气机叶片数量一般在2,000片左右。不同发动机型号设计的叶片级数均存在差异。从性能上看,压气机叶片决定了总增压比,即发动机对空气流动的压缩程度,提高发动机的增压比可以提高航空发动机的压缩效率和燃烧效率。另一方面,涡轮叶片的制造水平直接决定了涡轮承受的极限温度,从而影响发动机推重比与动力。因此,压气机叶片与涡轮叶片基本上决定了航空发动机热力循环的两个主要参数,叶片设计与制造的好坏直接决定着发动机的性能、安全与寿命。
2)盘类
航空发动机盘类件绝大部分是精密回转类零件、关重零件,工作条件为高温、高压、高转速的特殊环境,零件材料均为难加工材料,尺寸及技术条件精度严格,对操作人员的技能水平、设备精度等级、检测方法等要求较高。涡轮盘/压气机盘是航空发动机十分重要的转子部件,盘环件是航空发动机中工作条件最为苛刻、最为重要的部件之一,承受着复杂的循环热载荷及机械载荷。盘环件受力状态十分复杂,不同部位所受温度、载荷、介质作用都不相同。涡轮盘在四大热端部件中所占重量最大。涡轮盘是航空发动机上的重要转动部件,工作温度不高,一般轮缘为550-750℃,轮心为300℃左右,因此盘件径向的热应力大,特别是盘件在正常高速转动时,由于盘件质量重达几十至几百千克,且带着叶片旋转,要承受极大的离心力作用,在启动与停车过程中又构成周期性的大应力低周疲劳。用作涡轮盘的高温合金为高强度、高持久蠕变性能的变形高温合金和粉末高温合金。在我国,涡轮盘中变形高温合金GH4169合金用量最大、应用范围最广。
3)机匣类
机匣是航空发动机上的主要承力部件,为发动机承受载荷和包容的关键部件,属于典型的薄壁结构零件。其主要作用为:保护发动机核心机;给装在外部的发动机部件如燃油泵、滑油泵、发电机和齿轮箱等部件以及管路等提供支撑;内侧主要安装静子和燃烧室,和转子组件一起构成空气流通通道。按结构不同,机匣可以分为整体式环形机匣、对开式环形机匣、带整流支板机匣;按功能不同,机匣可以分为风扇机匣、外涵机匣、中介机匣、压气机机匣、燃烧室机匣、轴承机匣、涡轮机匣、附件机匣等。机匣材料多为钛合金、高温合金。由于机匣采用难加工金属材料且结构复杂,机匣加工过程中需要着重控制高精度形位公差及薄壁加工变形。
(3)控制系统
航空发动机控制系统就像人的大脑,负责接收各种传感器信号,进行计算处理,再驱动执行机构运动。它控制着发动机的稳态推力等级、瞬态的状态转换,以及安全保护等一系列活动。
航空发动机控制系统由一系列控制装臵组成,是确保发动机健康、稳定、安全工作,最大限度发挥发动机潜能,保证飞机正常工作的关键系统。随着航空发动机技术水平的不断提升,燃油与控制系统也由简单到复杂,并由机械液压控制发展为全权限数字电子控制器(FADEC)。同时发动机控制功能和控制变量的不断增加,导致燃油与控制系统越来越复杂,研制和维护成本增加。
(4)机械系统
航空发动机的机械系统包括传动、润滑、密封和主轴承系统4大部分。该系统具有结构复杂、故障多发、牵涉的学科多、国内基础相对薄弱等特点。
(5)总装
航空发动机总装是发动机制造过程中的终端及核心环节。航空发动机整机装配工艺涵盖从所有零件、成附件到各级组件、单元体、主单元体直至整机的全部装配和分解过程,也包括装配分解过程中的转子零组件平衡、各类检测(试验和测量)、清洗和油封存放等技术活动,所以需要大量的通用/专用工装夹具、标准/专用设备和厂房设施支撑,也需要相当数量的耗材/品、动力和人力开支。比如,一般成熟民用发动机零件级装配所需的专用工装夹具在500~1000件套之间,工艺设备种类大约在30~50种之间。因而,航空发动机整机装配与其他大型高端装备产品一样,作为制造终端环节,具有显著的技术密集型、资金密集型和高素质劳动密集型特征,相对一般工业产品,比如汽车整车,航空发动机装配质量对人工经验的依赖性要明显大一些。鉴于航空产品的高安全性需求特征,航空发动机装配制造更加强调装配精度、一致性和可靠性指标,而对于生产效率指标要求并不严格。
当前,面临生产任务量逐年递增、制造新技术实现难度大、准时交付管理严格等挑战,我国航空发动机主机厂纷纷面向智能制造探索基于脉动线思想的总装生产线,期望将先进的管理理念、管理方法、组织流程、装配工艺、工艺装备与新一代信息技术深度融合,打造新型产品总装生产与管理方式,大幅提高产品总装生产效率和质量,缩短生产周期,保障型号研制需要。罗罗、赛峰等国际先进航空发动机制造企业在不断深化数字化技术应用的同时,将智能制造作为工业变革的金钥匙,作为企业保持行业领先地位以及长远发展的战略制高点。罗罗不仅将数字化技术融入到设计研发中,还将其作为践行全球化的重要手段,通过无缝连接的全球化供应链管理系统,保证了制造品质与效率,通过健康管理系统,跟踪遍布全球10万台世界各地运营发动机的健康状态;赛峰在LEAP系列发动机生产线上,通过横向集成,将全球240多家供应商进行价值链以及信息网络资源整合,形成高效的供应链管控能力,同时利用数字孪生和自动化技术,有效提升产品的装配效率和质量,形成了年均总装1500多台的交付能力。
四、产业链扩产加速,业绩处于快速增长期
1、募投扩产加速,产能释放可期
全产业链扩产持续推进。航发控制、中航重机、三角防务、派克新材、航宇科技、钢研高纳、西部超导等公司均在近两年通过定向增发的方式融资募投扩产,提升公司产能,用于满足下游客户的旺盛需求,彰显了行业高景气度。
2、业绩处于快速增长期
五、航空发动机产业链投资分析
1、航空发动机产业总结
(1)航空发动机具有技术门槛高、耗资大、研制周期长、产品生命期长等特点。航空发动机被誉为“制造业皇冠上的明珠”,它是一个国家科技、工业和国防实力的重要标志,是构成国家实力基础和军事战略的核心技术之一。航空发动机需要在高温、高寒、高速、高压、高转速、高负荷、缺氧、振动等极端恶劣环境下工作,因此航空发动机的研制难度极大。由于每一款航空发动机的研发都需要攻克一系列的关键技术,需要经过零件级、部件级、整机级的多种、多轮试验验证,因此,航空发动机的研制周期很长。航空发动机的技术门槛极高,全世界能自主研制先进航空发动机的国家只有美、英、法、俄等少数发达国家。虽然涡轮喷气发动机的研制是一项投资大、耗时长的大工程,但一旦研制成功投入使用,生命周期可达50年甚至更长。
(2)预计未来10年我国军用发动机总市场空间年均992亿人民币。目前我国航空装备无论在数量上还是在质量上与世界一流均有明显差距,预计我国将长期保持在航空装备领域的中高速投入,而随着航空装备需求的增长必将带动我国军用航空发动机行业的稳步增长。预计未来十年我国军用航空发动机新增设备市场空间为年均451亿人民币,发动机维修市场541亿人民币,合计992亿人民币。未来随着新型航空发动机的成熟以及产能提升,行业进入收获期。我国军用航空发动机的总量增长、国产替代、维修市场,三者将为我国航空发动机产业提供巨大的市场空间。
(3)预计未来20年全球民用航空发动机市场空间年均近1400亿美元。市场需求将保持长期持续增长趋势。预计未来20年,全球商用航空发动机总交付量预计将达到80000台以上,市场价值达13000亿美元以上。再考虑发动机维修后市场,预计民用航空发动机市场年均近1400亿美金。综合考虑新发动机交付和老旧发动机退役,预计到2039年,全球商用航空发动机的市场规模将比目前翻一番,由2019年的约54000台增长到10万台以上。未来20年,预计中国航空发动机总交付量将达到15000台,市场价值达2600亿美元。其中,窄体飞机发动机交付量将占65%,宽体飞机发动机占28%。
(4)军民融合推进,航发产业链逐步开放,民营企业成长进入快车道。国外航空发动机巨头普遍采用的是“主承制商-供应商”发展模式,国内以中国航发商发为代表的主机厂近几年也积极对产业链进行转型升级,中国航发商发采用了“产业链两头以及中段代表核心竞争力的部分在内,其余业务尽量外包”的“元宝型”商业模式,军用发动机主机厂形成了军工企业与民口企业“主配牵手”的合作模式。近年来,受益于国家“两机”重大专项的落地,以及军民融合的深入推进,航空发动机产业链正在逐步放开,形成了“小核心、大协作、专业化、开放式”的科研生产体系。在这种背景下,民营企业也正在逐步成为一支不可忽视的力量。当前民营企业主要从零部件切入航空发动机领域,且多为同国际巨头合作,许多企业利用灵活的机制,引进国际知名专家队伍,定制国际先进的专业化设备,在高温合金材料制备、精密铸造、叶片机加等方面承担了多项航空发动机和燃气轮机科研生产任务。
(5)航空发动机研制流程、制造产业链及价值量占比介绍。航空发动机产业链航空发动机的研制主要分成论证、方案、工程研制、设计定型、生产定型、批量生产、使用保障这七个阶段,目前系统工程的研制思想逐渐在航空发动机的研制过程中得到应用。航空发动机制造产业链从上游到下游可分为原材料、零部件、单元体/分系统、总装。其中原材料又分为钛合金、高温合金、复合材料等,零部件可分为叶片类、盘轴类、机匣类等;单元体包括风扇增压级、高压压气机、燃烧室、高低压涡轮、喷管等;子系统包括控制系统、机械系统等。航空发动机的价值量占整机价值的20-30%,在发动机全寿命周期中,研发、采购、维护的价值量占比分别为10%、40%、50%左右。按原材料价值拆分来看,钛合金和高温合金占比分别在30%和35%左右,其他原材料包括铝合金、钢等占比在35%左右。按部件价值拆分来看,发动机热端部件的价值量占比高于冷端部件。
(7)国家对航空发动机产业重视程度增加,看好航空发动机产业链。国家发展国产航空发动机的决心明确。2016年航发集团正式成立,2017年我国两机专项正式实施,同时以航发资产、惠华基金为代表的国家资本积极向产业链投资,有效促进了航空发动机的研发进程。目前我国第三代军用发动机逐步成熟,新型发动机进展迅速,批产放量可期。而我国民用航空发动机坐拥全球最大民航市场,未来发展潜力巨大。预计我国航空发动机产业将加速发展,看好航空发动机产业链。
扫描二维码加入本会
关键字:军民融合|产业快讯|政策法规|信息发布|技术前沿|行业动态|高层观点|高层观点|经济发展|改革创新|投资指南