|Theauthorsofthepaper:LiuXiao(TsinghuaUniversity),ZhaoShiyu(TsinghuaUniversity),SuKai(TsinghuaUniversity),CenYukuo(Meituan),QiuJiezhong(TsinghuaUniversity),DongYuxiao(TsinghuaUniversity),ZhangMengdi(Meituan),Wuwei(Meituan),TangJie(TsinghuaUniversity)
|PaperIntroduction:KnowledgeGraphPre-trainingforComplexLogicalQuery.Thispaperstudiesthecomplexlogicalqueryprobleminknowledgegraph,discussestheinherentdefectsofmainstreamreasonersbasedonknowledgegraphembedding,andproposesanewgraphneuralnetworkreasonerbasedonKGTransformer,anditscorrespondingpre-trainingandfine-tuningmethods.KGTransformerachievesthebestresultsontwomajorknowledgegraphreasoningdatasets,especiallyonout-of-domaintasks,whichprovesthebroadprospectsofthisideaforknowledgegraphreasoning.
|Introductiontothepaper:Theindustrial-levelsearchrecommendationsystemmainlyfollowsthealgorithmsystemofrecall,roughsorting,finesorting,andrearranging.Inordertomeetthehugescoringscaleandstrictdelayrequirementsofroughrow,thetwin-towermodelisstillwidelyused.Inordertoimprovetheeffectofthemodel,someschemeswilladditionallyusetherefinedscoringknowledgefordistillation.However,twomajorchallengesremaintobeaddressed:
ThispaperusesthemethodofNeuralArchitectureSearch,andinnovativelyproposesthealgorithmframeworkofAutoFAS(AutomaticFeatureandArchitectureSelectionforPre-RankingSystem).Undertheguidanceoftheknowledgeoffinesortingandscoring,theoptimalcombinationschemeofroughsortingfeaturesandstructureisselectedatthesametime,whichachievestheeffectofSOTA.ThissolutionhasbeenfullyusedinthemainsearchscenarioofMeituan,andhasachievedsignificantonlineimprovement.
|Theauthorsofthepaper:LiYinfeng(TsinghuaUniversity),GaoChen(TsinghuaUniversity),DuXiaoyi(Meituan),WeiHuazhou(Meituan),LuoHengliang(Meituan),JinDepeng(TsinghuaUniversity),LiYong(TsinghuaUniversity)
Specifically,inthedisentangledintentencoder,weconstructthreesetsofdualhypergraphstocapturehigher-orderrelationshipsunderthreedifferenttypesofpreferences(time-related,place-related,andintrinsic)Theinformationdisseminationmechanismonthenetworklearnsdisentangledintentrepresentationsforusers.Intheintentdiscoverydecoder,thispaperconstructsthepseudo-labelsofpairedsamplesbasedonthesimilarityofdenoisedintentrepresentations,andrealizestheknowledgetransferfromknownintentstounknownintentsthroughsemi-supervisedlearningtocompleteintentdiscovery.Thispapercompareswithavarietyofadvancedbenchmarkalgorithmsonthelarge-scaleindustrialdatasetofMeituan.TheexperimentalresultsshowthattheproposedAutoIntentmethodcanachieveasignificantperformanceimprovementofmorethan15%comparedwiththeexistingbestsolutions.Overall,thispaperprovidesanewresearchideaforunderstandingandmodelinguserconsumptionbehaviorincities.
|Theauthorsofthepaper:LiuChang(TsinghuaUniversity),YuanYuan(TsinghuaUniversity),GaoChen(TsinghuaUniversity),BaiChen(Meituan),LuoLingrui(Meituan),DuXiaoyi(Meituan),ShiXinlei(Meituan),LuoHengliang(Meituan),JinDepeng(TsinghuaUniversity),LiYong(TsinghuaUniversity)
|Theauthorsofthepaper:LiuYaxu(NationalTaiwanUniversity&Meituanintern),YanRuinan(NationalTaiwanUniversity),YuanBowen(NationalTaiwanUniversity&Meituanintern),ShiRundong(Meituan),YanPeng(Meituan),LinZhiren(TaiwantheUniversity)
|PaperIntroduction:Fortrainingamachinelearningmodel,akeytaskistoconstructtrainingdatafromthefeedbackcollected(e.g.,ratings,clicks).However,itcanbefoundfromtheoreticalandpracticalexperiencethattheselectionbiasinthecollectedfeedbackcanleadtoabiasedmodelobtainedbytraining,resultinginthetrainingresultbeingnottheoptimalpolicy.Tosolvethisproblem,counterfactuallearninghasreceivedalotofattention,andexistingcounterfactuallearningmethodscanbedividedintoValueLearningmethodsandPolicyLearningmethods.
ThispaperstudiesthePolicyLearningmethodoftheTop-rankingmodelwithalargerdecisionspace,andproposesapracticallearningframeworktosolvetheImportanceWeightexplosioninthelearningofalargerdecisionspace,lesssamplesleadtolargervariance,andtraininglowefficiency,etc.Experimentsonopensourcedataverifytheeffectivenessandefficiencyoftheproposedframework.
|Theauthorsofthepaper:GaoChengliang(Meituan),ZhangFan(Meituan),ZhouYue(Meituan),FengRonggen(Meituan),RuQiang(Meituan),BianKaigui(PekingUniversity),HeRenqing(Meituan)Mission),SunZhizhao(Meituan)
|Introductiontothepaper:Intheinstantdeliverysystem,theaccurateestimationoftheordertimeforthemerchanttodeliverthemealisveryvaluabletoboththeuserandtheriderexperience.Therearetwomaintechnicalchallengesinthisproblem,namely,incompletesamplelabels(someordersonlyhavetheapproximaterangeofmealtime)andlargedatauncertainty,whicharedifficulttodealwithbyconventionalpointestimationregressionmethods.
Inthiswork,probabilityestimationisusedforthefirsttimetocharacterizetheuncertaintyofordermealtime,andanon-parametricmethodbasedondeeplearningisproposed,andthedatasamplesofrangelabelsarefullyutilizedinfeatureconstructionandmodeldesign.Inprobabilityestimation,thispaperproposestheS-QLlossfunctionandprovesitsmathematicalrelationshipwithS-CRPS,basedonwhichthequantilediscretizationofS-CRPSisperformedtooptimizethemodelparameters.BasedonrealdeliverydataevaluationandonlineA/Bexperiments,theadvantagesandeffectivenessofthismethodhavebeenproved.
|Theauthorsofthepaper:WuZhuolin(Meituan),HuangFangsheng(Meituan),ZhouLinjun(Meituan),SongYu(Meituan),YeChengpeng(Meituan),NiePengyu(Meituan),RenHao(Meituan),HaoJinghua(Meituan)Meituan),HeRenqing(Meituan),SunZhizhao(Meituan)
|Introductiontothepaper:Meituandeliveryaimstoprovidecustomersandrestaurantswithhigh-qualityandstableservices,buthundredsofthousandsofordersarestillcancelledeverydaybecausenoonetakestheorder.ThecancellationofordershascausedgreatdamagetotheuserexperienceandthereputationofMeituandamage.Tosolvethisproblem,Meituanprovidedaspecialfundtoimprovetheuserexperienceoftailorders.Ordersthathavenotbeenpickedupwillcontinuetobeexposedtoriders,soweneedtocontinuouslydecideontheamountofadditionalrewardsforordersuntiltheorderiscancelledortaken.Sincetheincentiveschemeatthelastmomentoftheorderwillsignificantlyaffecttheprobabilityoftheexistenceandcancellationoftheorderinthesubsequentstages,thisproblemisacomplexmulti-stagesequentialdecision-makingproblem.Inordertobetterenhancetheuserexperience,weproposeanewframeworktosolvethisproblem.Thisframeworkconsistsofthreeparts:
Thesemi-parameterizedordercompletion(cancellation)probabilitymodelisusedtopredicttherelationshipbetweentherewardamountallocatedtotheorderandtheprobabilityoftheorderbeingpickedupandfinallycompleted(cancelled)atthismoment.TheLagrangiandualdynamicprogrammingalgorithmmainlyusesThehistoricalorderdatacalculatestheLagrangianmultipliersolutionforeachallocationsequence,andtheonlineallocationalgorithmusestheresultsobtainedintheofflineparttocalculatethecorrespondingincentiveschemeforeachorder.WeconductedA/Bexperimentsonrealdeliveryscenarios.Theexperimentalresultsshowthatthenewalgorithmreducesthenumberofcancelledordersby25%comparedwiththebaselinealgorithm,whichsignificantlyimprovestheuserexperience.
TheabovepapersaretheresultsofthejointcooperationbetweenthetechnicalteamofMeituanandvariousuniversitiesandscientificresearchinstitutions.ThispapermainlyintroducessomescientificresearchworkofMeituaninthetechnicalfieldsofgraphpre-training,selectionalgorithm,automaticintentiondiscovery,effectmodeling,policylearning,probabilityprediction,andrewardframework.Ihopeitcanbehelpfulorenlighteningtoyou,andyouarealsowelcometocommunicatewithus.
ReadmorecollectionsoftechnicalarticlesfromtheMeituantechnicalteam
|Replykeywordssuchas[2021stock],[2020stock],[2019stock],[2018stock],[2017stock]inthepublicaccountmenubardialogbox,youcanviewthecollectionoftechnicalarticlesbytheMeituantechnicalteamovertheyears.