基于集成网络的离线到在线强化学习

强化学习(ReinforcementLearning,RL)有两种基础的训练范式:在线强化学习(OnlineRL)和离线强化学习(OfflineRL)。在线强化学习需要让智能体和环境进行交互,利用收集到的数据同步进行训练,但在环境中进行探索的开销很大;离线强化学习不需要和环境交互,直接利用已有的离线数据进行训练,但这种范式训练的智能体会受限于离线数据的质量和覆盖范围。

基于此,研究者提出了离线到在线强化学习(Offline-to-onlineRL)训练范式,先利用已有的离线数量训练得到离线策略,然后将其应用到在线环境进行少量步数的微调。这种范式相比于前两者,一方面通过收集少量的在线数据,能够突破离线数据的限制,更贴近实际场景;另一方面在线阶段的微调是以离线策略为起点,相比于从零开始的在线强化学习,只需要非常少量的交互就能快速收敛。这一研究领域主要研究两个问题,一个是分布偏移引起的性能下降,就是如果直接将离线策略应用到在线环境进行微调,会在微调初期出现性能的急剧下降;另一个是在线优化效率,由于在线交互的开销很大,需要用尽可能少的交互次数实现尽可能大的性能提升,这两者可以归结于稳定性和高效性。

在IJCAI2024上,哔哩哔哩人工智能平台部联合天津大学将集成Q网络(Q-ensembles)引入到离线到在线强化学习训练范式中,提出了基于集成网络的离线到在线强化学习训练框架(ENsemble-basedOffline-To-OnlineRL,ENOTO)。ENOTO以集成Q网络为基础,充分利用其衡量的不确定性来稳定两个阶段的过渡和鼓励在线探索,可以结合多种强化学习算法作为基线算法,在离线到在线强化学习设定下提升稳定性和学习效率,具有较好的泛用性。团队在强化学习的经典环境MuJoCo、AntMaze任务和多种质量的数据集上对ENOTO进行了广泛的实验验证,和以往的离线到在线强化学习算法相比,很大程度地提升了稳定性和学习效率,在大部分数据集上的累积收益提升约有10%-25%。

02动机

对于早期的离线强化学习算法,如ConservativeQ-Learning(CQL)[1],会显式惩罚分布外样本的Q值,鼓励策略选择数据集内的动作,而这种思想在DoubleDQN中就有提到。因此我们可以将这里的Q网络从2个增加到N个,这就是集成Q网络。令人惊讶的是,这种简单的改变对于离线到在线强化学习的提升却是非常明显的。我们首先进行了一项验证性实验,使用CQL这个被广泛认可的代表性离线强化学习算法作为基线算法,在经典的强化学习环境MuJoCo上进行实验,实验结果如图1所示。离线到在线强化学习训练有两种很简单的方法,一个是在线阶段继续复用离线强化学习算法,也就是这里的CQL→CQL,但由于离线强化学习算法的保守性,在线优化效率会很低,即图1(a)中的红线;另一个是切换到在线强化学习算法,也就是CQL→SAC[2],但是这种目标函数的切换会导致性能波动,即图1(a)中的橙线。而引入集成Q网络后,CQL-N→SAC-N算法可以在确保稳定性的同时,提升一定的学习效率,即图1(a)中的黑线。

图1集成Q网络在离线到在线强化学习训练框架中的验证性实验

我们还可以通过可视化的方式来分析集成Q网络的优势。首先我们将CQL→SAC和CQL-N→SAC-N在在线微调阶段的Q值变化过程进行可视化,如图1(b)所示,CQL→SAC这样直接切换优化目标的方式确实会导致Q值的高估并且非常不稳定,而引入集成Q网络之后,由于SAC-N仍然具有保守低估Q值的能力,其相比于SAC算法的Q值也就会偏小并且保持相对稳定的变化。

值得注意的是,CQL-N→SAC-N不仅能够相比于CQL→SAC提升稳定性,实现稳定的离线到在线强化学习训练,而且相比于CQL→CQL还能提升一定的学习效率。针对这一现象,我们通过分析SAC-N和CQL在在线微调阶段的动作选择区间来进行解释说明。具体来说,我们比较了SAC-N、CQL和随机策略在在线微调过程中采取的动作相比于离线数据集内动作的距离。结果如图1(c)所示,SAC-N能够比CQL选择更广范围的动作,这意味着CQL-N→SAC-N能够在在线微调过程中进行更充分的探索,也就有着更高的学习效率。

03方法

ENOTO框架可以细化为三步渐进式的优化,仍然在经典的强化学习环境MuJoCo上进行实验,但这里展示的是在所有任务和数据集上的综合结果,如图2所示。

图2ENOTO的三步渐进式优化

第一步,在已有离线强化学习算法的基础上,我们使用集成Q网络连接离线训练阶段和在线微调阶段,将离线阶段算法和在线阶段算法中使用的Q网络拓展为N个,然后选择所有Q网络中的最小值作为最终的目标Q值进行更新。这一步的主要目的是利用集成Q网络提升过渡阶段的稳定性,当然也提升了一定的学习效率。

第二步,在确保稳定性的基础上,我们考虑提升在线优化效率。第一步的目标Q值计算方法使用的MinQ,也就是N个Q网络选最小值作为目标Q值,但是这种方法对于在线强化学习来说还是太过保守,因此我们又研究了另外几种目标值计算方法,经过实验比较最终选择WeightedMinPair作为ENOTO的目标Q值计算方式。

第三步,我们还可以利用集成Q网络的不确定性来鼓励在线阶段的探索,进一步提升学习效率。具体来说,我们使用集成Q网络的标准差来衡量不确定性,在选择动作时不仅会考虑Q值的大小,还会考虑不确定性的大小,通过超参数调整权重来选择出最终的动作。因为见得少的动作的Q值估计不准,不确定性也会更大,这就是ENOTO中基于不确定性的在线探索方法。

图3ENOTO框架

如图3所示,ENOTO框架和经典离线到在线强化学习训练范式的框架相同,也分为离线训练和在线微调两个阶段。首先在离线训练阶段,以离线强化学习算法为基础,通过引入集成Q网络,利用已有的离线数据集训练得到1个策略网络和N个Q网络;然后在线阶段迁移离线阶段的策略网络和Q网络作为在线微调的起始状态,在确保稳定性的同时,仍然基于集成Q网络进行设计,通过使用新的目标Q值计算方法和基于不确定性的在线探索方法来提升在线微调阶段的学习效率。整个ENOTO框架以集成Q网络贯穿始终,通过多种训练机制的设计实现了稳定高效的离线到在线强化学习训练。

04实验

我们首先选择强化学习领域广泛使用的MuJoCo(Multi-JointdynamicswithContact)[3]作为验证算法的实验环境,在其中的三种运动控制任务HalfCheetah、Walker2d、Hopper进行实验验证。作为离线到在线强化学习训练范式的第一阶段,离线训练需要有离线数据,我们使用离线强化学习领域广泛使用的D4RL(DatasetsforDeepData-DrivenReinforcementLearning)[4]数据集用于离线训练,并且为了证明方法的泛用性,我们选择了不同质量的离线数据集进行实验验证,包括medium、medium-replay、medium-expert这三类离线数据集。对于baseline,我们选择了离线到在线强化学习研究领域中的经典算法、性能优异算法以及一些在线强化学习算法进行比较。

图4MuJoCo实验结果

然后,我们在难度更高的导航任务AntMaze上进行实验验证。具体来说,我们使用AntMaze任务中三种不同难度的迷宫进行实验,包括umaze、medium、large,三种迷宫从易到难,能够从不同层面检验算法的各项指标。而作为用于离线训练的离线数据集,我们同样使用D4RL数据集。在D4RL数据集中收集了两类的AntMaze数据:play和diverse。因此,我们在AntMaze任务的large-diverse、large-play、medium-diverse、medium-play、umaze-diverse和umaze这6个数据集上进行实验验证。同时,为了验证ENOTO对于多种基线算法的适配性,我们在这里使用ENOTO-LAPO(ENOTO在LAPO[10]上的实例化)进行实验。由于Antmaze是一个更具挑战性的任务,大多数离线强化学习方法在离线阶段难以取得令人满意的结果,因此我们仅将我们的ENOTO-LAPO方法与三个有效的基线方法(IQL、PEX和Cal-QL)在此任务上进行比较。

图5AntMaze实验结果

图5展示了ENOTO-LAPO和基线方法在在线微调阶段的性能表现。首先,LAPO在离线阶段表现优于IQL,为在线阶段提供了更高的起点,特别是在umaze和mediummaze环境中,它几乎达到了性能上限。而在线微调阶段由于离线策略的约束,IQL表现出较慢的渐近性能。基于IQL,PEX通过引入从头训练的新策略增强了探索程度,但这些策略在早期在线阶段的强随机性导致了性能下降。需要注意的是,尽管IQL和PEX具有相同的起点,PEX在大多数任务中表现出更严重的性能下降。关于Cal-QL算法,类似于原始论文中描述的结果,它在Antmaze环境中表现出强劲的性能,显著优于其在MuJoCo环境中的表现。值得注意的是,与基线方法IQL和PEX相比,Cal-QL展示了更好的稳定性和学习效率。对于我们提出的ENOTO框架,我们证明了ENOTO-LAPO不仅可以提升离线性能,还能在保持离线性能不下降的情况下,实现稳定且快速的性能提升。

05总结

本项工作在离线到在线强化学习中引入了集成Q网络作为训练机制,通过构建多个Q值估计网络来捕捉不同数据分布偏移情况下的多样性,提出了ENOTO训练框架。在离线训练阶段,ENOTO让集成Q网络从离线数据中学习多个Q值估计,以适应不同数据分布偏移情况,然后在在线微调阶段整合多个Q值估计,生成稳健的在线策略。在确保稳定性的基础上,我们重新设计了目标Q值计算方法,以在保持稳定性的同时提升学习效率。此外,我们利用Q值的不确定性信息,鼓励智能体探索不确定性较高的动作,从而更快地发现高性能策略。实验结果表明,ENOTO在强化学习经典环境MuJoCo和AntMaze上不仅可以提升离线性能,还能在保持离线性能不下降的情况下,实现稳定且快速的性能提升。这种方法使得离线智能体能够快速适应现实环境,提供高效且有效的在线微调。

THE END
1.强化学习的教育资源:在线课程与学习路径在线课程和教育资源是学习强化学习的一个好方法。在这篇文章中,我们将介绍一些在线课程和学习路径,以帮助您更好地理解强化学习的核心概念、算法和应用。 2.核心概念与联系 强化学习的核心概念包括:状态、动作、奖励、策略、值函数等。这些概念是强化学习中最基本的元素,理解这些概念对于学习强化学习至关重要。 https://blog.csdn.net/universsky2015/article/details/135801299
2.持续学习与在线强化学习.pptx2.通过持续学习和在线强化学习,可以实现更智能、更自主的系统,提高生产效率和服务质量。3.未来,持续学习与强化学习将成为人工智能领域的重要研究方向之一。在线强化学习的基本原理持续学习与在线强化学习在线强化学习的基本原理在线强化学习的定义1.在线强化学习是在线学习和强化学习的结合,通过实时的反馈和数据进行模型优化https://m.renrendoc.com/paper/297429452.html
3.什么是强化学习强化学习简介强化学习的优势以及应用嘲强化学习是一种机器学习的方法,它通过试错的方式学习如何做出最优的决策。强化学习的基本思想是将一个智能体放置在一个环境中,通过与环境的交互来学习如何做出最优的行动。在强化学习中,智能体通过观察环境的反馈来不断调整自己的行为,以获得最大的奖励。 https://cloud.tencent.com/developer/techpedia/1750
4.强化学习的基本概念在线学习和离线学习针对的是在强化学习模型在训练过程中交互数据的使用方式。在线学习的强化学习模型,会在一个交互之后,立即用本次交互得到的经验进行训练。而离线学习的强化学习模型,往往是先将多个交互的经验存储起来,然后在学习的时候,从存储的经验中取出一批交互经验来学习。 https://www.jianshu.com/p/28625d3a60e6
5.干部在线培训学习心得体会(通用21篇)学习能促进思维创新,思维创新促进智力发展。这市委委组织部又推出网上平台学习,对干部队伍强化学习、提高素质起到了极大的促进作用。 一是在线学习解决了工学矛盾的突出问题。它突破了面对面式授课,使整个学习变得灵活便捷,完全可以利用工作的闲暇时间,打开电脑就能进入“干部在线学习系统”。因此,一些零散的时间也就变成https://www.ruiwen.com/xindetihui/3426039.html
6.机器学习中在线学习批量学习迁移学习主动学习的区别电子所谓强化学习就是智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大,强化学习不同于连接主义学习中的监督学习,主要表现在教师信号上,强化学习中由环境提供的强化信号是对产生动作的好坏作一种评价(通常为标量信号),而不是告诉强化学习系统RLS(reinforcement learning system)如何去产生正确的动作。由于http://eetrend.com/node/100016949
7.个强化”集聚学习“能量”推动干部教育在线学习取得实效今年来,淳化县坚持把干部教育在线学习作为干部教育培训重要阵地,不断创新工作机制,加强日常管理,确保在线学习取得实效。与此同时,要求各单位确定1名管理员,负责协调、管理本单位参训学员在线学习工作,督促本单位学员按时按质完成在线学习任务,提升干部学习的自觉性http://www.sx-dj.gov.cn/gbgz/gbjy/1849627821005467649.html
8.多任务学习概述论文:从定义和方法到应用和原理分析机器之心我们假设所有任务(至少其中一部分任务)是相关的,在此基础上,我们在实验和理论上都发现,联合学习多个任务能比单独学习它们得到更好的性能。根据任务的性质,MTL 可以被分类成多种设置,主要包括多任务监督学习、多任务无监督学习、多任务半监督学习、多任务主动学习、多任务强化学习、多任务在线学习和多任务多视角学习。https://www.jiqizhixin.com/articles/nsr-jan-2018-yu-zhang-qiang-yang
9.关于进一步加强学习强国在线学习的通知各党支部、班级:为进一步有效利用“学习强国”这一重要学习平台,推动全院师生提升理论水平、深化思想认识、加强政治素养,现就加强“学习强国”在线学习提出如下要求:一、强化思想认识“学习强国”平台是党中央确定的权威理论学习平台,是推动习近平新时代中国特色社会主https://slxy.wzu.edu.cn/info/1048/17976.htm
10.强化学习离线模型离线模型和在线模型强化学习离线模型 离线模型和在线模型 在推荐算法领域,时常会出现模型离线评测效果好,比如AUC、准召等指标大涨,但上线后业务指标效果不佳,甚至下降的情况,比如线上CTR或CVR下跌。 本文尝试列举一些常见的原因,为大家排查问题提供一点思路。 1. 离线、在线特征不一致https://blog.51cto.com/u_14499/11815202
11.线上教学方案(二)认真研究,强化落实 各教学单位要认真研究、精心谋划,严格组织在线教学工作,确保本学期所开课程按照课程表安排能开尽开,确保在线课程需覆盖每个专业、每个班级、每个学生,确保每个学生能够参与在线学习。任课教师要深入挖掘教学资源,要在资源整合上下功夫,积极做好在线授课计划编制。要充分使用各类教学平台资源和国家专https://www.oh100.com/a/202212/5827795.html
12.科学网—[转载]强化学习在资源优化领域的应用根据智能体在与环境交互过程中具体学习的内容,可以把无须对环境进行建模(即model-free)的强化学习算法分为两大类:直接学习动作执行策略的策略优化算法(如REINFORCE)和通过学习一个值函数进而做出动作执行决策的值优化算法(如Q-learning)。 在策略优化这类算法中,主要学习对象是动作执行策略πθ,其中,θ表示当前策略的https://blog.sciencenet.cn/blog-3472670-1312677.html
13.理论学习中心组学习理论宣讲在线学习培训等方式,强化政治国有企业党组织应当坚持()相结合,采取集中轮训、党委(党组)理论学习中心组学习、理论宣讲、在线学习培训等方式,强化政治理论教育、党的宗旨教育、党章党规党纪教育和革命传统教育。 A. 集中培训和个人自学 B. 集中教育和经常性教育 C. 集中交易和个人自学 D. 集中培训和经常性教育 https://easylearn.baidu.com/edu-page/tiangong/questiondetail?id=1818143061180701021&fr=search
14.基于强化学习的仿人智能控制器参数在线学习与优化本文有效地实现了利用连续动作强化学习自动机在线学习具有多模态控制结构和分层递阶结构的仿人智能控制器参数。在文章的最后,选取研究对象,分别实现基于CARLA的仿人智能控制参数在线学习及基于CARLA的PID控制参数在线学习与优化。此外还分别利用遗传算法对系统参数进行寻优与CARLA参数寻优进行对比。结果显示,在不同控制器作用https://cdmd.cnki.com.cn/Article/CDMD-10611-2010217708.htm
15.GitHubWDWSD/easy强化学习中文教程(蘑菇书),在线阅读地址:https://datawhalechina.github.io/easy-rl/ - WDWSD/easy-rlhttps://github.com/WDWSD/easy-rl/
16.爱学习爱思考爱上进第I章地球和地图教育视频免费在线观看简介:爱学习爱思考爱上进上传的教育视频:第I章 地球和地图,粉丝数716,作品数385,免费在线观看,视频简介:七年级是初中学习阶段的开始,也是尽快适应初中学习节奏的关键环节。本课程聚焦七年级地理教材,使用思维导图对教材主要知识点进行梳理和归纳,旨在强化学生们对基础知识的掌握,提高解决实际问题的能力。 https://www.iqiyi.com/a_1fq44oyot11.html
17.张掖市干部在线学习平台张掖市在线学习平台https://www.zygbxxpt.com/Login.aspx
18.党支部工作心得体会(精选7篇)一是理论学习强化思想。根据支部建设情况和党员理论教育要求,按需求、分层次、分阶段,采取集中学习为主、个人自学为辅的灵活方式,保障中心组成员全年集中学习不少于12天,干部职工集中理论学习每月不少于一次。先后学习中央、省、市、区全会及“两大会议”精神,深刻领悟“十二五”规划纲要的决议、20xx版理论面对面等重要文https://mip.wenshubang.com/xindetihui/254988.html