一种基于BP神经网络的人工智能优化方法与流程

本发明涉及人工智能设备技术领域,特别涉及一种基于bp神经网络的人工智能优化方法。

背景技术:

当代的人工智能技术发展还不完善,用户在使用人工智能机器的过程中会遇到很多问题,人工智能系统也会出现许多错误,对用户的使用极为不利,所以,如何优化人工智能,提高人工智能的准确度和执行速度成为目前人工智能研究中的主要问题。

技术实现要素:

本发明的目的是提供一种基于bp神经网络的人工智能优化方法,以解决上述背景技术中提出的问题。

为实现上述目的,本发明提供如下技术方案:一种基于bp神经网络的人工智能优化方法,用户针对人工智能系统中的各操作,分别在人工智能系统中输入相应的命令,通过人工智能系统建立操作和命令集映射对,作为bp神经网络的原始训练集,对bp神经网络进行训练,所述命令为用户输入的原始命令信息,人工智能系统对其进行预处理及特征参数提取,将提取的特征参数值输入到bp神经网络的输入端;

用户向人工智能系统输入命令数据,人工智能系统首先对用户输入的命令数据进行预处理及提取命令的特征参数值,命令的特征参数值经过bp神经网络进行传播,将神经网络实际输出值与所有的期望值进行比较;若有其中一个误差值小于预先设定的误差值,则将该误差对应的输出作为语音识别的最终输出;然后进入步骤3;若所有的误差值均大于预先设定的误差值,则进入步骤4;

人工智能系统识别bp神经网络输出的应用程序的包名,调用包名相应的应用程序,执行应用程序相应的操作;

将所有的误差值在bp神经网络中反向传播,作为bp神经网络的输入,从而修正各个节点单元的权值,若当前学习次数小于预先设定的学习次数,则继续传播,直到其中一个误差值小于预先设定的误差值为止,若当前学习次数大于预先设定的学习次数时,还未出现一个误差值小于预先设定的误差值,则结束训练,并且由人工智能系统作出无法找到应用程序的提示。

优选的,步骤1中,操作和语音命令集映射对中操作的应用程序包名存放在人工智能系统的arraylist中,arraylist中包名的个数和bp神经网络输出层的输出维数相同。

优选的,步骤1和步骤2中命令的特征参数值的个数为6-8,所述bp神经网络的输入层的输入维数和命令的特征参数值的个数相同。

优选的,操作和命令集映射对中,包含有多个命令映射同一个操作的情况。

优选的,步骤2中,预先设定的误差值为0.000001。

优选的,步骤3中预先设定的学习次数为800-1000。

优选的,人工智能系统在建立操作和命令集映射对过程中,用户根据操作的作用输入相应的命令。

优选的,步骤1中操作为人工智能系统执行的应用程序,操作对应的应用程序包名为bp神经网络的输出。

与现有技术相比,本发明的有益效果是:通过终端系统本地的操作和命令集映射对代替传统命令识别方法中数据库中的训练数据,在极大程度上节省了终端的训练集存储容量,在操作和命令集映射对创建的过程中,将用户输入的命令作为原始训练集,人工智能在执行命令的的过程中出错误的概率变小,并且执行速度快、准确度高,多种命令可以控制同一个操作,使得人工智能的使用更加方便,提高了人工智能的效率值。

具体实施方式

下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例1

本发明一种基于bp神经网络的人工智能优化方法,其步骤如下:

步骤1、用户针对人工智能系统中的各操作,分别在人工智能系统中输入相应的命令,通过人工智能系统建立操作和命令集映射对,作为bp神经网络的原始训练集,对bp神经网络进行训练,所述命令为用户输入的原始命令信息,人工智能系统对其进行预处理及特征参数提取,将提取的特征参数值输入到bp神经网络的输入端;

步骤2、用户向人工智能系统输入命令数据,人工智能系统首先对用户输入的命令数据进行预处理及提取命令的特征参数值,命令的特征参数值经过bp神经网络进行传播,将神经网络实际输出值与所有的期望值进行比较;若有其中一个误差值小于预先设定的误差值,则将该误差对应的输出作为语音识别的最终输出,然后进入步骤3,若所有的误差值均大于预先设定的误差值,则进入步骤4,步骤1和步骤2中命令的特征参数值的个数为6;

步骤3、人工智能系统识别bp神经网络输出的应用程序的包名,调用包名相应的应用程序,执行应用程序相应的操作,此步骤中预先设定的学习次数为800;

步骤4、将所有的误差值在bp神经网络中反向传播,作为bp神经网络的输入,从而修正各个节点单元的权值,若当前学习次数小于预先设定的学习次数,则继续传播,直到其中一个误差值小于预先设定的误差值为止,若当前学习次数大于预先设定的学习次数时,还未出现一个误差值小于预先设定的误差值,则结束训练,并且由人工智能系统作出无法找到应用程序的提示。

实施例2

步骤2、用户向人工智能系统输入命令数据,人工智能系统首先对用户输入的命令数据进行预处理及提取命令的特征参数值,命令的特征参数值经过bp神经网络进行传播,将神经网络实际输出值与所有的期望值进行比较;若有其中一个误差值小于预先设定的误差值,则将该误差对应的输出作为语音识别的最终输出,然后进入步骤3,若所有的误差值均大于预先设定的误差值,则进入步骤4,步骤1和步骤2中命令的特征参数值的个数为7;

步骤3、人工智能系统识别bp神经网络输出的应用程序的包名,调用包名相应的应用程序,执行应用程序相应的操作,此步骤中预先设定的学习次数为900;

实施例3

步骤2、用户向人工智能系统输入命令数据,人工智能系统首先对用户输入的命令数据进行预处理及提取命令的特征参数值,命令的特征参数值经过bp神经网络进行传播,将神经网络实际输出值与所有的期望值进行比较;若有其中一个误差值小于预先设定的误差值,则将该误差对应的输出作为语音识别的最终输出,然后进入步骤3,若所有的误差值均大于预先设定的误差值,则进入步骤4,步骤1和步骤2中命令的特征参数值的个数为8;

步骤3、人工智能系统识别bp神经网络输出的应用程序的包名,调用包名相应的应用程序,执行应用程序相应的操作,此步骤中预先设定的学习次数为1000;

通过终端人工智能系统本地的操作和命令集映射对代替传统命令识别方法中数据库中的训练数据,在极大程度上节省了终端的训练集存储容量,在操作和命令集映射对创建的过程中,将用户输入的命令作为原始训练集,人工智能在执行命令的的过程中出错误的概率变小,并且执行速度快、准确度高,多种命令可以控制同一个操作,使得人工智能的使用更加方便,提高了人工智能的效率值。

尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

THE END
1.练习构建和训练神经网络在本单元中,你将使用 Keras 构建和训练分析文本情绪的神经网络。 若要训练神经网络,你需要数据来对其进行训练。 你将使用 Keras 随附的IMDB 电影评论情绪分类数据集,无需下载外部数据集。 IMDB 数据集包含 50,000 条电影评论,并且已分别对这些评论进行正面 (1) 或负面 (0) 的评分。 该数据集中的 25,0https://docs.microsoft.com/zh-cn/learn/modules/analyze-review-sentiment-with-keras/2-build-and-train-a-neural-network/
2.生信自学网神经网络GEO基础生信自学课堂生信自学网神经网络 GEO基础 GEO转录组 分子亚型 非肿瘤m6A WGCNA筛选 多芯片联合 GEO单基因 GEO免疫浸润 单细胞测序 geoBatch联合分析 肿瘤微环境 环状RNA芯片 长非编码RNA miRNA芯片 甲基化免疫 GEO精品 自噬基因 多芯片联合 氧化应激 节律基因 细胞衰老 铜死亡 https://ke.biowolf.cn/brand-68-c297.html
3.猎豹傅盛:为什么一款聊天软件可以带来生产力变革?参加学院第二条路是神经网络“自学”,所谓自学,就是给神经网络足够多的文本,神经网络会自动发现词与词之间的关系,这些关系简单理解就是参数。所以这是一个自动发现文本规律的路径。 第一条路更符合我们对语言学习的逻辑理解,就像人类学习外语,而且开始投入就能见到效果,所以绝大部分公司选择这条路线。但问题是,系统达到一定https://www.shangyexinzhi.com/article/8367219.html
4.MATLAB神经网络应用设计.pdf应用MATLAB设计神经网络.pdf 立即下载 上传者: u013883025 时间: 2021-11-02 Matlab神经网络自学笔记.pdf 。 立即下载 上传者: G11176593 时间: 2023-03-01 MATLAB神经网络30个案例分析.史峰.扫描版.pdf BP神经网络的数据分类,BP神经网络的非线性系统建模,遗传算法优化BP神经网络,神经网络遗传算法函数https://www.iteye.com/resource/wsf551-1554587
5.《深度学习基础》课程教学大纲.docx常用的概率分布 / 讲授 / 自学资料 5 第二章深度学习基础 / 4 讲授、上机 12 自学资料 6 2.1 深度学习发展历程介绍国内深度学习的进展和祖国深度学习领域取得的成就 M1,M4,M5 / 讲授 / 自学资料 7 2.2 感知机感知机的起源;感知机的局限性 M3,M4 / 讲授 / 自学资料 8 2.3 前馈神经网络神经元;网络结构https://m.book118.com/html/2022/1127/6043033235005021.shtm
6.自学神经网络总结神经网络自学因为OpenAI近期的活跃表现,对人工智能产生了兴趣。咨询了学习计算机科学的同学,了解到神经网络是人工智能较为重要的一块,所以抱着试一试的心态想要自学相关内容。以下是目前自学后的总结,主要是当给自己留个“努力过”的证明,如果有大佬看到了本文,还希望能多多批判,帮助笔者进步。https://blog.csdn.net/2401_82776339/article/details/136224406
7.吴恩达神经网络和深度学习课程自学笔记(二)之神经网络基础2,因为如果不用非线性激励函数,每一层都是上一层的线性函数,无论神经网络多少层,输出都是输入的线性组合,与只有一个隐藏层效果一样。相当于多层感知机了。所以引入非线性激励函数,深层网络就变得有意义了吴恩达神经网络和深度学习课程自学笔记(一)之深度学习概论 一:什么是神经网络? 拿房价预测举例:中间那https://www.pianshen.com/article/78361453767/
8.8个学习AI的网站(免费自学人工智能必备)学吧导航DeepLearningAI网站也是由人工智能和机器学习领域的权威吴恩达教授创建的在线学习平台,该网站提供与深度学习相关的各种课程和资源,深度学习是机器学习的一个子领域,专注于人工神经网络和深度神经网络。课程设计为初学者和有经验的实践者都可以使用,分为入门、中级、高级三个层次,涵盖一系列与深度学习有关的主题,包括神经https://www.xue8nav.com/2090.html
9.人民日报“阿尔法狗”为什么厉害AlphaGo背后是一群杰出的计算机科学家,确切地说,是机器学习领域的专家。科学家利用神经网络算法,将棋类专家的比赛记录输入给计算机,并让计算机自己与自己进行比赛,在这个过程中不断学习训练。某种程度上可以这么说,AlphaGo的棋艺不是开发者教给它的,而是‘自学成才’的。”王飞跃说。https://www.cas.cn/cm/201603/t20160321_4550032.shtml
10.机械专业工程师论文6篇(全文)模糊数学的实际应用是模糊控制器。最近开发出的高性能模糊控制器具有自学习功能,可在控制过程中不断获取新的信息并自动地对控制量作调整,使系统性能大为改善,其中尤其以基于人工神经 网络的自学方法更起人们极大的关注。 (三)工智能、专家系统及智能传感器技术 https://www.99xueshu.com/w/fileobal4g6u.html
11.神经网络控制《神经网络控制》是2009年年7月电子工业出版社出版的教材,作者是徐丽娜。[1] 该书共分五章,主要包括了神经网络理论基础,基于神经网络的动态系统模型、逆模型及其辨识问题,神经网络控制的多种结构及其设计问题,遗传算法的寻优机理,遗传算法与系统辨识、遗传算法与神经控制问题。[1] https://baike.sogou.com/v6372408.htm
12.“符号数学”终于向“神经网络”屈服:AI学会数学证明了?70多年前,作为思考大脑工作机制的一种革命性的手段,处在人工智能研究前沿的研究人员引入了神经网络。在人的大脑里,数十亿个互连的神经元网络会处理感知的数据,让我们能够从经验中学习。人工神经网络还可以按照它们自学而来的规则,通过互连的层过滤大量数据,从而预测和识别模式。 https://www.36kr.com/p/722866675812231
13.像大脑一样思考:深度学习如何让人工神经网络重现生机界面新闻但是,随着科学技术的发展,对控制系统智能化的要求也越来越高,基于串行计算的Von Neumann计算机面对复杂的智能控制系统逐渐显现出运作困难与其本身的局限性。而人工神经网络则采用并行计算方法,加之其对复杂的、不确定的问题拥有自适应性和自学能力,使人工神经网络为自动控制摆脱困境提供了一条可行的道路。https://www.jiemian.com/article/425375.html