下一代人工智能方法重大研究计划项目指南发布政策资讯

近日,国家自然科学基金委员会发布可解释、可通用的下一代人工智能方法重大研究计划2024年度项目指南,面向人工智能发展国家重大战略需求,以人工智能的基础科学问题为核心,发展人工智能新方法体系,促进我国人工智能基础研究和人才培养,支撑我国在新一轮国际科技竞争中的主导地位。具体通知如下:

本重大研究计划面向以深度学习为代表的人工智能方法鲁棒性差、可解释性差、对数据的依赖性强等基础科学问题,挖掘机器学习的基本原理,发展可解释、可通用的下一代人工智能方法,并推动人工智能方法在科学领域的创新应用。

本重大研究计划针对可解释、可通用的下一代人工智能方法的基础科学问题,围绕以下三个核心科学问题开展研究。

(一)深度学习的基本原理

深入挖掘深度学习模型对超参数的依赖关系,理解深度学习背后的工作原理,建立深度学习方法的逼近理论、泛化误差分析理论和优化算法的收敛性理论。

(二)可解释、可通用的下一代人工智能方法

通过规则与学习结合的方式,建立高精度、可解释、可通用且不依赖大量标注数据的人工智能新方法。开发下一代人工智能方法需要的数据库和模型训练平台,完善下一代人工智能方法驱动的基础设施。

(三)面向科学领域的下一代人工智能方法的应用

发展新物理模型和算法,建设开源科学数据库、知识库、物理模型库和算法库,推动人工智能新方法在解决科学领域复杂问题上的示范性应用。

(一)培育项目

围绕上述科学问题,以总体科学目标为牵引,对于探索性强、选题新颖、前期研究基础较好的申请项目,将以培育项目的方式予以资助,研究方向如下:

1.神经网络的新架构和新的预训练或自监督学习方法

针对图像、视频、图、流场等数据,发展更高效的神经网络新架构,预训练或自监督学习方法,并在真实数据集上进行验证。

2.深度学习的表示理论和泛化理论

研究卷积神经网络(以及其它带对称性的网络)、图神经网络、循环神经网络、低精度神经网络、动态神经网络、生成扩散模型等模型的泛化误差分析理论、鲁棒性和稳定性理论,并在实际数据集上进行验证;研究无监督表示学习、预训练-微调范式等方法的理论基础,发展新的泛化分析方法,指导深度学习模型和算法设计。

3.深度学习训练算法的理论基础

4.大模型的基础问题

研究多任务、多数据、大模型的基础问题,包括但不限于大模型的表示理论和泛化理论、大模型训练的稳定性、标度率(scalinglaw)、涌现等现象;研究新型(structured)statemodel的基础性质,包括它是否有记忆灾难(curseofmemory)的困难;理解Transformer模型的表达和泛化能力、上下文学习(In-Contextlearning),ChainofThoughts推理的有效性,以及模型的外推能力(例如lengthgeneralization)等。

5.微分方程与机器学习

研究求解微分方程正反问题及解算子逼近的概率机器学习方法;基于生成式扩散概率模型的物理场生成、模拟与补全框架;基于微分方程设计新的机器学习模型和网络结构,加速模型的推理、分析神经网络的训练过程。

6.图神经网络的新方法

利用随机游走、多项式近似、调和分析、粒子方程等数学理论解决深度图神经网络过度光滑、过度挤压、适用异配图与动态图等问题;针对药物设计、推荐系统、多智能体网络协同控制等重要应用场景设计有效的、可扩展的、具有可解释性的图表示学习方法。

7.人工智能的安全性问题

针对主流机器学习问题,发展隐私保护协同训练和预测方法;发展面向对抗样本、数据投毒、后门等分析、攻击、防御和修复方法;研究机器学习框架对模型干扰、破坏和控制的方法;发展可控精度的隐私计算方法,数据和模型(包括大模型)的公平性、可靠性的评估与评级方法。

8.科学计算领域的人工智能方法

针对电子多体问题,建立薛定谔方程数值计算、第一性原理计算、自由能计算、粗粒化分子动力学等的人工智能方法,探索人工智能方法在电池、电催化、合金、光伏等体系研究中的应用。

针对典型的物理、化学、材料、生物、燃烧等领域的跨尺度问题和动力学问题,发展物理模型与人工智能的融合方法,探索复杂体系变量隐含物理关系的挖掘方法和构效关系的数学表达,建立具有通用性的跨尺度人工智能辅助计算理论和方法,解决典型复杂多尺度计算问题。

9.以数据为中心的机器学习

针对数据质量、数量和效率等因素,发展机器学习方法为下游机器学习模型提供大量高质量数据;针对AIforScience数据侧,研究和设计高效的科学数据(如对蛋白质和药物构图)构建和预处理方式;针对大模型数据侧,从数据获取成本和效率出发,建立科学和系统的数据质量评估策略,设计高效的数据选择方法,构建有效的数据配比方式,并探索大模型辅助数据质量提升的方法(如自动数据标注)。

10.基于量子计算的机器学习算法

研究不同类型的学习方法如何映射到一般的量子过程,提出新算法利用量子特性实现高效学习;研究量子机器学习相对于经典机器学习方法在表达能力以及泛化能力上的优势,探索量子机器学习的可解释性,建立量子机器学习在量子物理和化学的应用场景。

11.开放型项目

(二)重点支持项目

围绕核心科学问题,以总体科学目标为牵引,拟以重点支持项目的方式资助前期研究成果积累较好、对总体科学目标在理论和关键技术上能发挥推动作用、具备产学研用基础的申请项目,研究方向如下:

1.下一代人工智能方法

发展结合逻辑推理、知识和规则的人工智能方法,建立具有可解释和可通用性的人工智能理论框架;发展适用于连续、密集数据(如图像)和非结构化数据(如分子结构)的新型神经网络架构,有效捕捉空间、结构、语义等多维度的上下文信息,提高对数据的建模能力。在真实数据集上进行验证。

2.新一代脑启发的人工智能模型与有效训练算法

针对大脑神经元的物理形态和生物物理的多样性,建立生物神经元与人工神经元之间的简洁且有效的映射关系,使人工神经元具有生物神经元的树突非线性整合与计算功能,为建立其它类型生物神经元与人工神经元的映射提供统一的理论和算法框架。结合大脑神经元网络连接结构、脑区异质性和宏观梯度等特点,设计带生物神经元特性约束的人工神经网络模型,实现记忆、决策等高级认知功能。实现不少于3种生物神经元与人工神经元之间的有效映射和3种重要的树突计算功能,与现有映射相比,实现精度、性能和参数可解释性上的提升。

3.多智能体协作学习理论与方法

4.多模态融合及生成基础模型

研究多模态数据融合及生成的基础模型,解决数据视角、维度、密度、采集和标注难易程度不同而造成的融合难题;研究模态融合过程中的模态对齐问题,保证模态预测的一致性并减少融合过程中信息损失;研究轻量级的融合模型,提升在模态间非完美对齐状态下融合模型的鲁棒性;研究用易采集、易标注模态数据来引导难采集、难标注模态数据的预训练与微调方法;研究大规模多任务、多模态学习的预训练问题,实现少样本/零样本迁移,发展跨模态多样性数据生成的方法;研究多模态大模型的新型、统一概率建模方法,解决离散、连续混合数据类型的概率建模与生成难题,提高多模态基础模型的生成效率。在多模态模型中实现不少于3个模态的表示学习、对齐及生成能力,模型参数不少于7B,探索在智能座舱、自动驾驶或多模态对话等领域的应用验证。积累用于训练多模态大模型的优质标注数据,并探索数据闭环,采集数量超过标注样本不少于2个量级的非完美标注或无标注数据,实现模型迭代优化。

5.模型与数据融合的大模型训练方法

探索系统性的、自适应数据选取方法,以达到数据和模型的有机融合,包括:在模型训练过程中on-the-fly选取下一步所采用的数据的方法;建立数据和模型有机融合的机器学习框架;发展替代大模型训练普遍采用的先处理数据、再做模型训练的两步走模式的有效方法。

6.视频原生的自监督学习方法

7.支持下一代人工智能的通用型高质量科学数据库

大规模高质量科学数据是人工智能驱动的科学研究新范式的必要条件。研究科学数据、科技文献等的知识对象标注、抽取、融合中的主动学习机制与自动关联算法;研究面向知识对象的智能编码与机器可识读的多元解析,支持跨领域知识对象的广谱关联,实现与不少于3个国际主流科技资源标识动态互通,支持与外部数据资源智能化融合;研究多模态跨学科知识碎片对齐与知识对象识别方法,以及多学科领域数据自动生产与增强算法,形成符合国际规范或经同行评议的且覆盖不少于8个学科领域的高质量科学数据1PB以上。

8.AIforScience的基础设施建设与示范应用

发展AIforScience的基础设施方法,包括:基础物理模型的人工智能算法;高效率、高精度的实验表征算法;自动化和智能化实验平台建设;科学文献和科学数据的整合与智能应用。发展AIforScience的创新应用,包括但不限于:复杂催化体系(催化剂动态结构变化、反应网络高度复杂等问题);碳达峰和碳中和中的核心催化反应;工况条件下的电化学表征方法;生物医学中的高效率和高精度的成像技术;有机合成的自动化和智能化解决方案;定向进化蛋白质工程等。重点支持理论和实验相结合并形成闭环的项目。

(一)紧密围绕核心科学问题,鼓励基础性和交叉性的前沿探索,优先支持原创性研究。

(二)优先支持面向发展下一代人工智能新方法或能推动人工智能新方法在科学领域应用的研究项目。

(三)重点支持项目应具有良好的研究基础和前期积累,对总体科学目标有直接贡献与支撑。

拟资助培育项目约25项,直接费用资助强度不超过80万元/项,资助期限为3年,培育项目申请书中研究期限应填写“2025年1月1日-2027年12月31日”;

拟资助重点支持项目约6项,直接费用资助强度约为300万元/项,资助期限为4年,重点支持项目申请书中研究期限应填写“2025年1月1日-2028年12月31日”。

(一)申请条件

本重大研究计划项目申请人应当具备以下条件:

1.具有承担基础研究课题的经历;

2.具有高级专业技术职务(职称)。

在站博士后研究人员、正在攻读研究生学位以及无工作单位或者所在单位不是依托单位的人员不得作为申请人进行申请。

(二)限项申请规定

(三)申请注意事项

1.本重大研究计划项目实行无纸化申请。申请书提交日期为2024年4月15日-4月22日16时。

(1)申请人应当按照科学基金网络信息系统中重大研究计划项目的填报说明与撰写提纲要求在线填写和提交电子申请书及附件材料。

扫描二维码进入

(3)申请书中的资助类别选择“重大研究计划”,亚类说明选择“培育项目”或“重点支持项目”,附注说明选择“可解释、可通用的下一代人工智能方法”,受理代码选择T01,根据申请的具体研究内容选择不超过5个申请代码。培育项目和重点支持项目的合作研究单位不得超过2个。

(4)申请人在申请书起始部分应明确说明申请符合本项目指南中的资助研究方向,以及对解决本重大研究计划核心科学问题、实现本重大研究计划科学目标的贡献。

2.依托单位应当按照要求完成依托单位承诺、组织申请以及审核申请材料等工作。在2024年4月22日16时前通过信息系统逐项确认提交本单位电子申请书及附件材料,并于4月23日16时前在线提交本单位项目申请清单。

THE END
1.练习构建和训练神经网络评论是“干净的”,因为字母已转换为小写字母并删除了标点字符。 但是,它们还没有为训练神经网络来分析文本的情绪做好准备。 使用张量集合训练神经网络时,每个张量需要具有相同的长度。 目前,表示x_train和x_test中的评论的列表具有不同的长度。 幸运的是,Keras 包含一个函数,可使用列表的列表作为输入,并能https://docs.microsoft.com/zh-cn/training/modules/analyze-review-sentiment-with-keras/2-build-and-train-a-neural-network
2.随时间在线训练脉冲神经网络模型的图像数据分类方法与流程10.为了克服上述现有技术的不足,本发明提供一种基于随时间在线训练的脉冲神经网络模型进行图像视觉数据分类的方法,方法取名为ottt(online training through time)。通过本发明提供的方法,可以在训练snn模型时极大地减小训练内存的开销,将训练得到的模型用于计算机图像数据和神经形态图像视觉数据的分类与识别等视觉任务,能够https://www.xjishu.com/zhuanli/55/202210694741.html
3.利用EdgeImpulse在线网站自行训练神经网络进行分类识别而基于STM32H7的OpenMV机器视觉模组和云端AI平台Edge Impulse合作,就很好的打通了从数据收集、打标,NN模型训练、优化到部署的整个流程。 去年4月份我们的新品OpenMV4 H7 Plus上市啦,今天我来给大家介绍一下OpenMV4 H7 Plus的新功能——利用EdgeImpulse在线网站自行训练神经网络进行分类识别。 https://www.elecfans.com/d/1532483.html
4.最受欢迎的算法之一:反向传播训练反向传播是训练神经网络的最常用方法之一。Rumelhart、Hinton和Williams(1986)引入了反向传播,该方法到今天仍然很流行。程序员经常使用反向传播训练深层神经网络,因为在图形处理单元上运行时,它的伸缩性很好。要了解这种用于神经网络的算法,我们必须探讨如何训练它,以及它如何处理模式。 https://labs.epubit.com/articleDetails?id=70e0465200ba43599b1c83243affae5c
5.深度学习框架PyTorch使用指南:神经网络模型训练与部署完整教程是一个开源的深度学习框架,它为Python提供了强大的计算能力,同时提供了灵活的神经网络构建和训练接口。 的特点 以动态计算图为基础,具有灵活的张量计算和自动微分功能,深受研究人员和工程师的青睐。 二、神经网络模型训练 神经网络建模 通过PyTorch可以轻松地构建各种类型的神经网络模型,包括卷积神经网络、循环神经网络等https://www.jianshu.com/p/45aa62e76791
6.字节跳动破局联邦学习:开源Fedlearner框架,广告投放增效209%联邦学习技术本质上是为了帮助联邦双方更好地训练模型。不同公司由于此前积累的数据类型特征不同,落地应用场景不同,会采用不同的模型训练方式。 常见的模型训练包括神经网络模型训练、树模型训练、线性回归模型训练等等。其中,神经网络训练模型最常见的落地应用场景是推荐,包括个性化内容推荐、广告推荐等等,而树模型更多在https://maimai.cn/article/detail?fid=1550604028&efid=zqj9rqK7Yf_Us-lu-0Wnmg
7.TensorFlow在线可视化神经网络demotensorflowplayground官网深度学习在近几年又迎来高潮,很多同学都听说过这个名字,而大多数人只是“听说”而已。如何更进一步地了解深度学习以及神经网络的内部构造呢? 作为深度学习一个经典工具,TensorFlow官网也提供了一个在线可视化的demo,方便初学者了解神经网络这一技术。 使用方法 https://blog.csdn.net/qq_39856931/article/details/106296817
8.在线深度学习:在数据流中实时学习深度神经网络机器之心在本文的工作中,我们尝试通过解决一些「在线深度学习,ODL」中的开放性问题,例如如何从在线设置中的数据流中学习深度神经网络(DNN),希望以此弥补在线学习和深度学习之间的鸿沟。一种可能的在线深度学习的方式就是,在每一轮在线训练中仅在一个单独的数据样本上直接应用标准的反向传播训练。这个方法虽然简单,但是由于某些https://www.jiqizhixin.com/articles/2017-12-30
9.推荐系统完整的架构设计和算法(协同过滤隐语义)简单来说自编码神经网络尝试学习中间层约等于输入层的函数。换句话说,它尝试逼近一个恒等函数。如果网络的输入数据是完全随机的,比如每一个输入都是一个跟其他特征完全无关的独立同分布高斯随机变 ,那么这一压缩表示将会非常难于学习。但是如果输入数据中隐含着 些特定的结构,比如某些输入特征是彼此相关的,那么这一算https://cloud.tencent.com/developer/article/1508050
10.如何在服务器上跑神经网络?Worktile社区一旦模型经过训练和评估,并且在服务器上运行良好,就可以将其部署到实际应用中。通过使用预训练的模型或集成模型到您的应用程序中,您可以开始使用该模型进行预测和推理。 在服务器上运行神经网络需要一些基本的技术知识和经验。确保您熟悉所选择的深度学习框架的文档和示例,并根据需要参考在线资源和学习资料。通过不断实践https://worktile.com/kb/ask/1305511.html
11.MIT史上首次用AI控制动物大脑活动!技术前沿洞察新闻频道如今,我们生活中几乎所有基于人工智能的产品都依赖于有自主学习并标记数据能力的“深度神经网络”。 然而,为了更好地学习,神经网络通常需要需要大量的数据集进行大型的训练——这一训练过程耗时长、需要配备昂贵的GPU,有时还需要定制设计的硬件。这些客观因素导致深度学习无法被普及。 https://news.hexun.com/2019-05-14/197178826.html
12.基于图神经网络的社交网络影响力预测算法局部网络进行特征提取,然后将特征向量作为输入对图神经网络进行训练,从而对用户的社会表征进行预测.该方法的创新之处:运用图卷积和图关注方法,将社交网络中用户的特征属性和其所处局域网络特征相结合,大大提高了模型预测的精度.通过在推特、微博、开放知识图谱等数据集上的大量实验,证明该方法在不同类型的网络中都有https://jns.nju.edu.cn/CN/10.13232/j.cnki.jnju.2022.03.003
13.模拟人工智能的光学计算澎湃号·湃客澎湃新闻一个深度学习网络通常首先需要大量的样本进行训练,以优化所有的权重系数。经过训练后,网络可以对样本有效地执行一定的预测任务。在许多光学神经网络的相关研究中,训练在计算机上完全数字化离线进行,只有光学神经网络的预测操作是通过光学实验进行的。事实上,对光学神经网络在线训练在一定程度上也可以实现。 https://www.thepaper.cn/newsDetail_forward_15420945
14.基于一维宽核卷积神经网络—长短时记忆网络的单导脑电信号睡眠本文从数据类不均衡处理及神经网络模型训练优化两方面开展研究工作[18-19],构建高性能的睡眠状态识别模型,以达到准确分类睡眠状态的目的。首先,针对N1样本量与其他状态样本量不均衡的问题,采用合成少数过采样技术(synthetic minority over sampling technique,SMOTE)联合托梅克联系对(Tomek link,Tomek)算法(SMOTE-Tomek)对https://www.cjebm.com/article/10.7507/1001-5515.202204021
15.基于深度学习的权重计算深度学习算法lgmyxbjfu的技术博客相比DQN算法,A3C算法不需要使用经验池来存储历史样本,节约了存储空间,并且采用异步训练,大大加倍了数据的采样速度,也因此提升了训练速度。与此同时,采用多个不同训练环境采集样本,样本的分布更加均匀,更有利于神经网络的训练。 A3C算法在以上多个环节上做出了改进,使得其在Atari游戏上的平均成绩是DQN算法的4倍,取得了https://blog.51cto.com/u_14444/11796212