DanaMackenzie:流体神经网络如何突破数学极限

DanaMackenzie:流体神经网络如何突破数学极限

将卵石投入流动的水流,可能不会大幅度改变流型。但是若将卵石扔到其他位置,则可能会发生很大变化。谁能进行预测呢?

答案:神经网络可以。美国帕萨迪纳加利福尼亚理工学院(CaliforniaInstituteofTechnology,Caltech)的计算机科学家和数学家,通过展示神经网络可自学如何比以往任何一种计算机程序更快、更准确解决一大类流体流动问题,为人工智能(AI)开辟了新的舞台。

加利福尼亚理工学院的计算与数学科学教授、科学人工智能(AI4Science)联合负责人AnimashreeAnandkumar表示:“当我们的小组两年前聚在一起时,我们讨论了人工智颠覆哪些科学领域的时机已经成熟。我们认为,如果能找出一个强大的框架来解算偏微分方程,那么我们就能产生广泛的影响。”

他们的首个目标是二维纳维-斯托克斯方程(Navier-Stokesequation),该方程描述了无限薄的一层水的运动情况(图1)。他们的神经网络(他们称之为“傅里叶神经算子”)在解决这类问题时,其性能(速度提高了400倍,精度提高了30%)大大优于以前的任何微分方程解算器。

偏微分方程(PDE)是牛顿运动定律自然而然产生的一类方程。为此,偏微分方程是科学的基础,解算这些方程取得的任何重大进展都会产生广泛影响。Anandkumar表示:“我们正与各行业以及学术界和国家实验室的众多团队进行讨论。我们已在进行三维流体流动实验。”

Anandkumar表示,一个很好的应用案例是核聚变建模方程式。她补充道:“另一个应用案例是材料设计,尤其是塑性与弹性材料设计。在此领域中,团队成员,即力学与材料科学教授KaushikBhattacharya具有丰富的经验。”

在第二次世界大战期间,计算机应运而生的部分原因是使用微分方程来预测炮弹运动。从那时起,计算机一直用于解算微分方程,具有一定的准确性和成功率。但是以往的方法,无论涉及传统计算机编程或人工智能,始终是一次只能处理一个方程。例如,计算机可弄清楚扔到一个位置的一颗卵石如何影响水流动。然后,计算机就可学习扔到其他位置的卵石如何改变水流动。但计算机并不会进一步理解扔到任何位置的卵石如何改变水流动。这是加利福尼亚理工学院傅里叶神经算子背后的宏伟目标。

但无论你拥有多少训练数据,你都可能无法探索无限维空间中最微小的部分。你无法尝试将卵石放入水流中的所有位置。此外,若无任何事先假设,则不能保证你的网络能正确预测将卵石扔到新位置时会发生什么事情。

特别是,Stuart知道线性偏微分方程(最简单的偏微分方程类型)可以通过著名的格林函数方法来解算,这是用于解算这些常见问题和偏微分方程的一种策略,而其他方法可能无法解决这些问。基本上,它为方程的适当解提供了一个模板。该模板可在有限维空间中进行近似求解,因此,可将问题从无限维减少到有限维。

纳维-斯托克斯方程为非线性方程,因此,其尚无此类模板。但是,若纳维-斯托克斯方程存在类似于格林函数的东西,即非线性方程(不过其仍存在有限维模板),那么神经网络应该能够对其进行学习。虽然无法保证这样做会奏效,但Stuart称其为“见多识广的冒险”。他表示,经验一次又一次地表明,神经网络非常适合学习有限维空间中的非线性映射。

美国加利福尼亚大学圣克鲁兹分校的应用数学系助理教授DanieleVenturi表示,学习无限维空间之间的非线性算子是计算科学领域的“圣杯”(holygrail)。Venturi的研究涉及微分方程和无限维函数空间,他表示不相信加利福尼亚理工学院团队已经做到了这一点。他说:“通常,在有限数量的输入-输出对基础上学习无限维空间之间的非线性映射是不可能的,但能够对其进行近似求解。实际上,主要问题在于这种近似求解的计算成本及其准确性和效率。他们展示的结果确实令人印象深刻。”

改编原文:

DanaMackenzie.PushingMathematicalLimits,aNeuralNetworkLearnsFluidFlow[J].Engineering,2021,7(5):550-551.

THE END
1.自学神经网络总结神经网络自学遵循这个思路,我自学神经网络时,会把重点更多地放在数学建模这一步。当然,适当了解计算机编程也十分有必要,但能力有限,在本篇总结中,我会只从数学建模这一个角度去阐述我的自学成果。 提出问题 我主要自学了两个板块:图像识别与自然语言处理。因此,对应提出的问题就是: https://blog.csdn.net/2401_82776339/article/details/136224406
2.神经网络入门基础知识腾讯云开发者社区引发了第一波神经网络的热潮,但感知机的致命缺点是:Minsky在1969年证明Perceptron无法解决异或问题。根源在于,二维层面上神经网络是一条直线。无法划分异或的区间。 0=σ(x0w0+x1w1+b)0=x0w0+x1w1+bx1w1=0?x0w0?bx1=?w0w1x0?bw1y=kx+b https://cloud.tencent.com/developer/article/2299888
3.神经网络极简入门简介:神经网络是深度学习的基础,正是深度学习的兴起,让停滞不前的人工智能再一次的取得飞速的发展。 神经网络是深度学习的基础,正是深度学习的兴起,让停滞不前的人工智能再一次的取得飞速的发展。 其实神经网络的理论由来已久,灵感来自仿生智能计算,只是以前限于硬件的计算能力,没有突出的表现,直至谷歌的AlphaGO的出现https://developer.aliyun.com/article/1554921
4.自学神经网络之路随笔分类梦想不大的小菜鸟走进神经网络——01.了解神经网络基本知识 摘要:最近一直想着写一篇神经网络入门级的的博文,由于学习的原因,一直拖到了今天,趁着周五没课,我将我自学神经网络的经历总结一下。由于本科的毕业设计就是使用卷积神经网络做的,因此我对神经网络有了一种不可言喻的兴趣,在读研的时候我就想着系统地学习一下神经网络。 https://www.cnblogs.com/nbq520/category/1874856.html
5.生信自学网神经网络GEO基础生信自学课堂生信自学网神经网络 GEO基础 GEO转录组 分子亚型 非肿瘤m6A WGCNA筛选 多芯片联合 GEO单基因 GEO免疫浸润 单细胞测序 geoBatch联合分析 肿瘤微环境 环状RNA芯片 长非编码RNA miRNA芯片 甲基化免疫 GEO精品 自噬基因 多芯片联合 氧化应激 节律基因 细胞衰老 铜死亡 https://ke.biowolf.cn/brand-68-c297.html
6.吴恩达神经网络和深度学习课程自学笔记(二)之神经网络基础2,因为如果不用非线性激励函数,每一层都是上一层的线性函数,无论神经网络多少层,输出都是输入的线性组合,与只有一个隐藏层效果一样。相当于多层感知机了。所以引入非线性激励函数,深层网络就变得有意义了吴恩达神经网络和深度学习课程自学笔记(一)之深度学习概论 一:什么是神经网络? 拿房价预测举例:中间那https://www.pianshen.com/article/78361453767/
7.NeuralNetwork(神经网络自学的英文材料).ppt内容提供方:little28 大小:878.5 KB 字数: 发布时间:2017-01-15发布于湖北 浏览人气:128 下载次数:仅上传者可见 收藏次数:0 需要金币:*** 金币 (10金币=人民币1元)NeuralNetwork(神经网络自学的英文材料).ppt 关闭预览 想预览更多内容,点击免费在线预览全文 免费在线预览全文 NeuralNetwork(神经网络https://max.book118.com/html/2017/0115/84067209.shtm
8.猎豹傅盛:为什么一款聊天软件可以带来生产力变革?参加学院第二条路是神经网络“自学”,所谓自学,就是给神经网络足够多的文本,神经网络会自动发现词与词之间的关系,这些关系简单理解就是参数。所以这是一个自动发现文本规律的路径。 第一条路更符合我们对语言学习的逻辑理解,就像人类学习外语,而且开始投入就能见到效果,所以绝大部分公司选择这条路线。但问题是,系统达到一定https://www.shangyexinzhi.com/article/8367219.html
9.deeplearn.js:在浏览器上训练神经网络目前我正在自学神经网络,想找一些现成的库可以帮我完成一些任务。谷歌最近发布了deeplearn.js,可以用来训练神经网络,于是我就试用了一把。在这篇文章里,我将分享如何使用deeplearn.js训练神经网络,并用它解决真实世界的Web访问性问题。 神经网络有什么用?https://labs.epubit.com/articleDetails?id=NC7E3EF979E300001D4711053BA389B60
10.人工神经网络基础人工神经网络基础是为信号与信息处理、模式识别与智能系统等学科的本科高年级学生和硕士生编写的教材,也是相关专业技术人员自学神经人工网络的入门参考书。全书共分7个章节,以信号与信息处理、模式识别与智能系统等学科为背景,对人工神经网络的基础知识作了介绍,具体包括前向多层网络、Hopfield网络、波尔兹曼机(BM)网络https://www.qwbaike.cn/doc-view-5283.html
11.8个学习AI的网站(免费自学人工智能必备)学吧导航DeepLearningAI网站也是由人工智能和机器学习领域的权威吴恩达教授创建的在线学习平台,该网站提供与深度学习相关的各种课程和资源,深度学习是机器学习的一个子领域,专注于人工神经网络和深度神经网络。课程设计为初学者和有经验的实践者都可以使用,分为入门、中级、高级三个层次,涵盖一系列与深度学习有关的主题,包括神经https://www.xue8nav.com/2090.html
12.神经网络控制《神经网络控制》是2009年年7月电子工业出版社出版的教材,作者是徐丽娜。[1] 该书共分五章,主要包括了神经网络理论基础,基于神经网络的动态系统模型、逆模型及其辨识问题,神经网络控制的多种结构及其设计问题,遗传算法的寻优机理,遗传算法与系统辨识、遗传算法与神经控制问题。[1] https://baike.sogou.com/v6372408.htm
13.“符号数学”终于向“神经网络”屈服:AI学会数学证明了?70多年前,作为思考大脑工作机制的一种革命性的手段,处在人工智能研究前沿的研究人员引入了神经网络。在人的大脑里,数十亿个互连的神经元网络会处理感知的数据,让我们能够从经验中学习。人工神经网络还可以按照它们自学而来的规则,通过互连的层过滤大量数据,从而预测和识别模式。 https://www.36kr.com/p/722866675812231
14.像大脑一样思考:深度学习如何让人工神经网络重现生机界面新闻但是,随着科学技术的发展,对控制系统智能化的要求也越来越高,基于串行计算的Von Neumann计算机面对复杂的智能控制系统逐渐显现出运作困难与其本身的局限性。而人工神经网络则采用并行计算方法,加之其对复杂的、不确定的问题拥有自适应性和自学能力,使人工神经网络为自动控制摆脱困境提供了一条可行的道路。https://www.jiemian.com/article/425375.html
15.神经网络阮一峰51CTO博客已为您找到关于神经网络 阮一峰的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及神经网络 阮一峰问答内容。更多神经网络 阮一峰相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。https://blog.51cto.com/topic/666469e43507794.html