IDRLnet:基于内嵌物理知识神经网络的开源求解框架

红山开源隶属于北京大数据先进技术研究院,是集开源项目、创客空间和开放竞赛于一体的在线协同创新平台。

编者按

01学科与开发背景简介

02IDRLnet设计架构

图2用集合运算构造的几何区域,蓝色为边界采样配点,其上的箭头为法向量方向,法方向随边界采样自动生成。

图3单个数据源构建损失。

图4单个数据源构建计算图与流水线。

图5训练过程中,用户可在以上步骤结点处自定义操作,实现现有的各类PINN算法。

03测试案例说明

图6方形通风管道内部流速场对鳍片的几何参数变化的响应。

图7上下边绝热、左右边导热的二维穿孔元件,对多个几何设计变量的热流密度场实时响应预测。

图8采用传统的平方损失未能识别出系数,这是由于u=3处的多个测点数据为异常值,干扰了参数识别。

图9尽管有异常值的干扰,IDRLnet在鲁棒损失下识别出系数(c=1.5245)。

图10固定上下两端圆环,寻找面积最小的曲面连接上下圆环;IDRLnet对初始值进行了预训练,加速了后续IDRLnet对变分问题寻优。

THE END
1.算法进阶深度学习知识蒸馏的研究综述(建议收藏!)知识蒸馏网络结构中间层知识所表达的是深度神经网络的中间层部件所提取出的高维特征,具有更具表征能力的特征知识。中间层知识可以提高传输知识的表征能力和信息量,有效提升蒸馏训练效果。但是不同架构的教师学生模型的中间层知识表征空间通常难以直接匹配基于中间层知识的蒸馏方法在实践中通常需要考虑教师和学生模型的网络结构,可以将其分为https://blog.csdn.net/csdn_xmj/article/details/141681981
2.Science:神经网络模型的特征学习机制澎湃号·湃客澎湃新闻神经网络一直在推动人工智能的突破,包括现在在金融、人力资源和医疗保健等各个领域中广泛使用的大语言模型。神经网络通过反向传播和梯度下降等方法,在输入数据上自动地“发现”有意义的模式或特征。揭秘特征学习的机制一直是悬而未决的问题,但这是提高神经网络性能和可解释性的关键。 https://www.thepaper.cn/newsDetail_forward_26894581
3.神经网络极简入门人工智能EquatorCoco因为一只果蝇就有 10 万个神经元,而人类的大脑则有大约 1000 亿个神经元,这就是为什么训练一个可用的神经网络模型需要庞大的算力,这也是为什么神经网络的理论1943 年就提出了,但是基于深度学习的AlphaGO却诞生于2015 年。 2. 实现一个神经网络 了解上面的基本概念只能形成一个感性的认知。下面通过自己动手实现一个https://xie.infoq.cn/article/4f0fa17683253084f4fb69ce4
4.机器学习——神经网络与深度学习:从基础到应用深度学习在图像识别中表现出色。卷积神经网络(CNN)能够从图像数据中提取层次化特征,从而实现物体检测、人脸识别、医学图像分析等任务。例如,在医疗领域,CNN被用于分析X光片、CT扫描图像,以辅助医生做出诊断。 自然语言处理(NLP) NLP任务包括文本分类、情感分析、机器翻译、语音识别等。基于Transformer架构的预训练模型(如https://cloud.tencent.com/developer/article/2456527
5.一种基于知识和耦合神经网络实例混合推理的智能CAPP策略研究【摘要】:提出一种新的耦合神经网络的实例与知识混合推理策略。采用面向对象的方法表达实例和知识 ,并将神经网络用于实例推理中 ,在此基础上实现了 CAPP的变异设计。建立了基于零件及其工艺数据知识的分层分解表达模式与层次式优化推理机制 ,从而实现了 CAPP的创成式设计。给出智能化 CAPP系统的总体结构 ,对基于神经https://www.cnki.com.cn/Article/CJFDTotal-ZGJX200012005.htm
6.一种基于知识蒸馏的量化卷积神经网络FPGA部署AET一种基于知识蒸馏的量化卷积神经网络FPGA部署 引言 我国心血管病(Cardiovascular Disease,CVD)发病率和死亡率仍在升高,在我国城乡居民疾病死亡构成比中,CVD占首位[1]。提前预防和诊断CVD是目前很重要的医疗问题。24 h动态心电图可以在较长时间内对人体心脏安静和活动状态下的心电图变化情况进行记录、编集和分析,进而http://m.chinaaet.com/tech/designapplication/3000164860
7.吕盛坪基于空间力系对三维点云模型的力学分析软件, 2022SR0578666,2022/3/24 吕盛坪;李鑫;信德全;张胡成.基于改进Knn算法的邮政编码快速识别软件V1.0,2022SR1435370,2022/8/17 吕盛坪;李鑫;信德全;张胡成.基于深度卷积神经网络的形状识别软件V1.0,2022SR1435323, 2022/8/17 吕盛坪;李鑫;欧阳斌;赵贺杰.计算机视觉技术https://gcxy.scau.edu.cn/2015/0525/c2101a71262/page.htm
8.基于知识图谱的推荐算法研究综述Wang等[3]提出了一种将知识图谱表示引入到新闻推荐中的深度知识感知网络DKN。该模型利用Kim CNN[61]从新闻标题中提取实体,并进行实体链接,通过TransD将从原始知识图谱中提取的实体的关系链接子图构建特征向量,还使用实体的近邻实体提取实体的上下文信息。最后使用多通道和单词实体对齐的知识感知卷积神经网络KCNN,将单词语https://www.fx361.com/page/2023/0113/16791653.shtml
9.面向植物病害识别的卷积神经网络精简结构Distilled卷积神经网络(CNN)的发展带来了大量的网络参数和庞大的模型体积,极大地限制了其在小规模计算资源设备上的应用。为将CNN应用在各种小型设备上,研究了一种基于知识蒸馏的结构化模型压缩方法。该方法首先利用VGG16训练了一个识别率较高的教师模型,再将该模型中的知识通过蒸馏的方法迁移到MobileNet,从而大幅减少了模型的参https://www.smartag.net.cn/article/2021/2096-8094/2096-8094-2021-3-1-109.shtml
10.一种基于多模态知识图谱的作业安全风险识别方法.pdf于,对所述电力现场作业数据进行知识抽取包括文本数据的关键信息抽取,包括以下步骤: 获取数据类型为文本数据的电力现场作业数据; 对电力现场作业数据中的实体和关系类型进行定义; 抽取部分数据类型为文本数据的电力现场作业数据并根据定义进行标注,得到训练 集; 构建基于注意力机制的分段卷积神经网络模型; 通过所述训练集对https://m.book118.com/html/2024/0117/6050033233010034.shtm
11.自动驾驶中的决策规划算法概述该类模型主要包括:基于规则的推理系统[8]、基于案例的推理系统[9]和基于神经网络的映射模型[10]。 该类模型对先验驾驶知识、训练数据的依赖性较大,需要对驾驶知识进行精心整理、管理和更新,虽然基于神经网络的映射模型可以省去数据标注和知识整合的过程,但是仍然存在以下缺点: https://maimai.cn/article/detail?fid=1632742005&efid=-v_3-yQZIF8tka6AIpwz5A
12.科学网—智能化金融科技创新监管工具:理念平台框架和展望而且,上述各种技术是彼此互补、交叉融合的:区块链为知识图谱和神经网络提供源源不断的可信数据,神经网络基于海量高质量数据样本进行模型训练,知识图谱则不停地从数据中抽取出监管规则和领域知识[26],保障算法在运行安全上的可靠性以及应用实践上的可解释性。该过程交替往复、循环推进,使得创新监管工具本身也在持续进行https://blog.sciencenet.cn/blog-2374-1261704.html