在机器学习中经常使用的6种人工神经网络

人工神经网络是是类似于人类神经系统功能的计算模型。有几种人工神经网络是基于数学运算和确定输出所需的一组参数来实现的。让我们来看看吧:

1.前馈神经网络-人工神经元

这个神经网络是人工神经网络最简单的形式之一,它的数据或输入是单向的。数据通过输入节点并在输出节点上退出。这个神经网络可能有隐藏层,也可能没有隐藏层。简单地说,通常使用分类激活函数,它具有前传播波而无反向传播。

下面是一个单层前馈网络。在这里,输入和权重的乘积之和被计算出来并输出到输出。输出被认为是否超过某个值,即阈值(通常为0),神经元以激活的输出(通常为1)激发,如果不激活,则激活的值被发射(通常为-1)。

前馈神经网络在计算机视觉和语音识别中的应用,对目标类的分类是复杂的。这些神经网络对噪声数据敏感,易于维护。本文介绍了前馈神经网络的使用情况。x射线图像融合是基于边缘叠加两个或多个图像的过程。这是一个视觉描述。

2.径向基函数神经网络

下面是一个图表,它表示从中心到平面的一个点的距离,类似于圆的半径。这里,也可以使用欧几里德距离度量中使用的距离度量。该模型在将各点划分为不同的类别时,依赖于圆的最大值或半径。如果该点位于半径内或附近,新点开始分类到该类别的可能性很高。从一个区域到另一个区域的变化可能会有一个转变,而这可以由beta函数来控制。

该神经网络已应用于电力恢复系统。电力系统的规模和复杂性都在增加。这两个因素都增加了大停电的风险。在停电之后,电力需要尽快和可靠地恢复。本文介绍了RBF神经网络在该领域的应用。

电力恢复通常按以下顺序进行:

—第一要务是恢复社区基本客户的权力。这些客户为所有人提供医疗保健和安全服务,首先回复他们的权利,使他们能够帮助其他人。基本客户包括医疗设施、学校董事会、重要的市政基础设施、警察和消防服务。

—然后专注于为更多客户服务的主要电力线路和变电站。

—给维修带来更高的优先级,将使最大数量的客户尽快恢复服务

—然后将电力恢复到较小的社区、个人住宅和企业的电源。

下图显示了电力恢复系统的典型顺序:

参照图表,首先要解决传输线上A点的问题。有了这条线路,所有的房子都不能恢复供电。接下来,解决变电站外主配电线上的问题B。房屋2、3、4和5都受到这个问题的影响。接下来,将线路固定在C点,影响4号和5号房屋。最后,我们将D线的服务线固定到房屋1。

3.Kohonen自组织神经网络

Kohonen地图的目标是将任意维度的向量输入到由神经元组成的离散映射中。地图需要训练来创建自己的训练数据组织。它由一个或两个维度组成。在训练地图时,神经元的位置保持不变,但权重因数值不同而不同。这个自组织过程有不同的部分,在第一阶段,每个神经元的值都是用一个小的权重和输入向量来初始化的;在第二阶段,最接近该点的神经元是“获胜的神经元”,与获胜神经元相连的神经元也将向下移动,如下图所示。点与神经元之间的距离是由欧几里德距离计算,距离最远的神经元获胜。通过迭代,所有的点都聚集在一起,每个神经元代表每一种集群。这是Kohonen神经网络组织的主旨。

Kohonen神经网络用于识别数据中的模式。其应用可以在医学分析中找到,以将数据聚类成不同的类别。Kohonen地图能够对具有高准确度的肾小球或肾管患者进行分类。这里是如何使用欧几里德距离算法对其进行数学分类的详细解释。下图展示了健康和患有肾小球的人之间的比较。

4.递归神经网络(RNN)-长期短期记忆

递归神经网络的工作原理是保存一层的输出,并将其反馈给输入,以帮助预测该层的结果。

递归神经网络的应用可以在语音(TTS)转换模型中找到。本文介绍了在加州百度人工智能实验室开发的DeepVoice。它是受传统的文本到语音结构的启发,用神经网络代替所有的组件。首先,将文本转换为“音素”,音频合成模型将其转换为语音。RNN也在Tacotron2中实现:人类喜欢通过文本转换的语音。我们可以从下面看到:

5.卷积神经网络

卷积神经网络类似于前馈神经网络,其神经元具有可学习的权重和偏差。在计算机视觉领域,它的应用已经在计算机视觉领域承担OpenCV的信号和图像处理。

下面是一个ConvNet的表示,在这个神经网络中,输入特性像一个过滤器一样分批被采取的。这将帮助网络记住部件中的图像,并能够计算操作。这些计算涉及将图像从RGB或HIS尺度转换成灰度。一旦我们有了这个,像素值的变化将帮助检测边缘和图像可以划分为不同的类别。

ConvNet应用于信号处理和图像分类技术等技术。由于图像分类的准确性,计算机视觉技术由卷积神经网络占主导地位。从像LSAT这样的开源卫星中提取农业和气象特征的图像分析和识别技术正在得到实施。

6.模块化神经网络

下面是一个视觉表现:

模块化神经网络(MNN)是人工神经网络研究中一个快速发展的领域。本文研究了创建MNN的不同动机:生物、心理、硬件和计算。然后,对MNN设计的一般阶段进行了概述和调查,即任务分解技术、学习方案和多模块决策策略。

THE END
1.有关循环神经网络的详细内容- 循环神经网络是一类用于处理序列数据的神经网络。与传统的前馈神经网络不同,RNN具有循环连接,能够对序列中的历史信息进行记忆和利用。它的神经元不仅接收当前输入,还接收来自上一时刻的隐藏状态作为输入,这种结构使得它在处理具有时间序列或序列依赖关系的数据时非常有效。 https://blog.csdn.net/m0_63243562/article/details/144358010
2.重磅!神经网络浅讲:从神经元到深度学习腾讯云开发者社区神经网络是一门重要的机器学习技术。它是目前最为火热的研究方向–深度学习的基础。学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术。 本文以一种简单的,循序的方式讲解神经网络。适合对神经网络了解不多的同学。本文对阅读没有一定的前提要求,但是懂一些机器学习基础会更https://cloud.tencent.com/developer/article/1055312
3.神经网络机器之心在机器学习和认知科学领域,这是一种模仿生物神经网络(动物的中枢系統,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。 [描述来源:Wikipedia; URL:https://zh.wikipedia.org/zh-hans/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C] https://www.jiqizhixin.com/graph/technologies/72b0bcc0-d8f9-4edd-919f-fa7c2560388c
4.神经网络除了基本单元的构造外,神经元模型中还有很多参数需要进行学习,如权重和偏置等。权重表示了神经元处理不同输入信号时的重要程度,而偏置则表示了神经元产生输出信号的难易程度,因此这些参数的学习和调整对神经网络的训练和预测精度具有极大的影响。 神经网络的结构 编辑本段 神经网络是由多个神经元(也称节点或单元)组成https://vebaike.com/doc-view-943.html
5.神经网络神经网络是一个由生物神经元组成的网络或电路,或者从现代意义上讲,是一个由人工神经元或节点组成的人工神经网络。因此,一个神经网络要么是由生物神经元组成的生物神经网络,要么是用于解决人工智能(AI)问题的人工神经网络。生物神经元的连接在人工神经网络中被建模为节点之间的权重。正的权重反映了兴奋性连接,而负值https://vibaike.com/176101/
6.什么是神经网络?神经网络完整指南Elastic您可以使用矢量数据库、文本分类、数据注释、PyTorch和 Hugging Face 等一系列工具,为数据集训练模型,从而构建支持强大 AI 和 Machine Learning 的搜索体验。 神经网络资源 将Elasticsearch 与神经网络相结合识别个人数据 Machine Learning 指南 Elasticsearch 入门https://www.elastic.co/cn/what-is/neural-network
7.一文搞懂神经网络人工智能是这几年非常火的技术,上至九十九下至刚会走都对人工智能或多或少的了解。神经网络是人工智能的核心,也就是说没有神经网络就没有人工智能,那么这篇文章就带大家学习一下神经网络相关的知识。这篇文章没有数学公式、没有代码,旨在帮助读者快速掌握神经网络的核心知识。 https://www.51cto.com/article/606086.html
8.神经网络(豆瓣)写影评 分享到 推荐 神经网络的剧情简介· ··· 《神经网络》讲述的是一位卧底潜入毒品犯罪集团的惊险故事。警察局在获得情报后追踪一个大犯罪集团,毒贩中的卧底冒着生命危险配合行动,最后却被陷害牺牲。 神经网络的图片· ···(添加图片)https://movie.douban.com/subject/25863069/
9.神经网络(NeuralNetwork)③ 偏置的大小度量了神经元产生激励(激活)的难易程度。 二. 激活函数 1.概念 (1)定义:也称为转换函数,是一种将输入 (input) 转成输出 (output) 的函数。 (2)作用:一般直线拟合的精确度要比曲线差很多,引入激活函数能给神经网络增加一些非线性的特性。 https://www.jianshu.com/p/bcf32f779972
10.什么是神经网络?神经网络的类型CloudflareAcme 公司会计部的运作方式有点像神经网络。员工提交费用报告就好比是神经网络的输入层。每个经理和总监就好比是神经网络中的一个节点。 就像一位会计经理在将费用报告交给会计主管之前,可能会请另一位经理协助解读报告一样,神经网络也可以用多种方式构建。节点可进行多向通信。 有哪些类型的神经网络? 神经网络的节点https://www.cloudflare-cn.com/learning/ai/what-is-neural-network/