做AI必须要知道的十种深度学习方法雷峰网

因此深度学习可以被定义为在以下四个基本网络框架中拥有大量参数和层的神经网络:

卷积神经网络基本上就是用共享权重在空间中进行扩展的标准神经网络。设计CNN主要是为了通过内部卷积来识别图片,内部卷积可以看到待识别物体的边。

以下10种方法可以应用于所有这些体系结构。

反向传播是“误差反向传播”的简称,它是一种计算函数(在神经网络中以函数形式存在)偏微分的方法。当你要用一个基于梯度的方法来解决一个最优问题时(注意梯度下降只是解决这类问题的一种方法),你希望在每一次迭代中计算函数梯度。

对于神经网络而言,目标函数具有合成的形式。那么如何计算梯度呢?一般情况下有两种常见的方法:

1)微分分析法。当你知道这个函数的形式时,你只需要用链式法则计算导数即可;

2)用有限差分方法来近似微分。这种方法的计算量很大,因为函数评估的数量是O(N),其中N是参数的数量。与微分分析法相比,这是比较昂贵的。不过,有限差分通常在调试时验证后端实现。

一个直观理解梯度下降的方法是去想象一条溯源山顶的河流。这条河流会沿着山势梯度的方向流向山麓下的最低点。

如果让人来走,可能就不一样了,你可能会先随便选一个方向,然后沿着这个方向的梯度向下走;过一会儿再随机换一个方向向下走;最后你发现自己差不多也到了谷底了。

数学化的理解就是:

随机梯度下降主要用来求解类似于如下求和形式的优化问题:

梯度下降法:

当n很大时,每次迭代计算所有的梯度会非常耗时。随机梯度下降的想法就是每次在Deltaf_i中随机选取一个计算代替上面的Deltaf_i,以这个随机选取的方向作为下降的方向。这样的方法反而比梯度下降能够更快地到达(局部)最优解。

在训练模型的时候,通常会遇到这种情况:我们平衡模型的训练速度和损失(loss)后选择了相对合适的学习率(learningrate),但是训练集的损失下降到一定的程度后就不在下降了,比如trainingloss一直在0.7和0.9之间来回震荡,不能进一步下降。如下图所示:

学习率衰减(learningratedecay)就是一种可以平衡这两者之间矛盾的解决方案。学习率衰减的基本思想是:学习率随着训练的进行逐渐衰减。

学习率衰减基本有两种实现方法:

在当前的大规模神经网络中有两个缺点:

Dropout可以很好地解决这个问题。Dropout说的简单一点就是在前向传导的时候,让某个神经元的激活值以一定的概率p停止工作,示意图如下:

每次做完dropout,相当于从原始的网络中找到一个更瘦的网络。

Hinton在其论文中做了这样的类比,无性繁殖可以保留大段的优秀基因,而有性繁殖则将基因随机拆了又拆,破坏了大段基因的联合适应性;但是自然选择了有性繁殖,物竞天择,适者生存,可见有性繁殖的强大。dropout也能达到同样的效果,它强迫一个神经单元,和随机挑选出来的其他神经单元共同工作,消除减弱了神经元节点间的联合适应性,增强了泛化能力。

池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的向下采样。有多种不同形式的非线性池化函数,而其中“最大池化(Maxpooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。

直觉上,这种机制能够有效地原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要。池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合。通常来说,CNN的卷积层之间都会周期性地插入池化层。

包括深度网络在内的神经网络需要仔细调整权重初始化和学习参数。批标准化使这些变得轻松许多。

权重问题:

在反向传播过程中,这些现象会导致梯度弥散。这就意味着在学习权重产生所需要的输出前,必须对梯度的异常值进行补偿,这将导致需要额外的时段来收敛。

批量归一化使这些梯度从分散到正常值并在小批量范围内流向共同目标(通过归一化)。

学习率问题:一般来说,学习率需要保持较低的值,使得只有一小部分的梯度来校正权重,原因是要使异常激活的梯度不影响已学习到的激活。通过批量标准化,可以减少这些异常激活,因此也就可以使用更高的学习率来加速学习过程。

LSTM网络具有以下三个方面,使其与循环神经网络中的常见神经元不同:

1)它能够决定何时让输入进入神经元;

LSTM的美妙之处在于它能够根据当前的输入本身来决定所有这些。所以你看下面的图表:

词嵌入模型的目标是为每个词项学习一个高维密集表示,其中嵌入向量之间的相似性显示了相应词之间的语义或句法相似性。Skip-gram是一个学习词嵌入算法的模型。

skip-gram模型(以及许多其他的词语嵌入模型)背后的主要思想如下:两个词项相似,如果它们共享相似的上下文。

换句话说,假设你有一个句子,例如“猫是哺乳动物”;如果你用“狗”而不是“猫”,这个句子还是一个有意义的句子。因此在这个例子中,“狗”和“猫”可以共享相同的上下文(即“是哺乳动物”)。

基于上述假设,你可以考虑一个上下文窗口(一个包含k个连续项的窗口),然后你跳过其中一个单词,试着去学习一个能够得到除跳过项外的所有项的神经网络,并预测跳过的这个项。如果两个词在一个大语料库中反复共享相似的语境,则这些词的嵌入向量将具有相近的向量。

在自然语言处理问题中,我们希望学习将文档中的每个单词表示为一个数字的向量,使得出现在相似的上下文中的单词具有彼此接近的向量。在连续的单词模型中,目标是能够使用围绕特定单词的上下文并预测特定单词。

我们通过在一个大的语料库中采取大量的句子来做到这一点,每当我们看到一个单词时,我们就提取周围的单词。然后,我们将上下文单词输入到一个神经网络,并预测在这个上下文中间的单词。

当我们有成千上万个这样的上下文单词和中间词时,我们就有一个神经网络数据集的实例。我们训练神经网络,最后编码的隐藏层输出表示了特定单词的嵌入。恰巧,当我们对大量的句子进行训练时,类似语境中的单词得到相似的向量。

让我们想一下如何在CNN中处理一张图片。假设有一张图片,你对它进行卷积处理,然后你得到的输出是像素的组合,我们姑且称之为“边”吧。我们再次使用卷积,这时候你得到的输出将是边的组合,我们称之为“线”。如果再次使用卷积,那么你将得到线的组合,等等。

每一层都是在寻找相应的特定模式。你的神经网络最后一层一般会给出非常特定的模式。也许你在处理ImageNet,你的网络最后一层可能是在找孩子、狗或飞机或别的任何东西。如果你向前两层看,网络可能是在找眼睛、耳朵、嘴巴或者轮子。

深度卷积神经网络中的每一层的深入都是在构建越来越高层次的特征表示。最后两层会产生你输入模型的数据中的特定模式。换句话说,早期的层提取的特征则广泛得多,在提取的大量的类中有很多简单的模式。

深度学习非常注重技术,而对每一个新的想法却没有太多具体的解释。大多数新的idea只是用实验结果来证明它们的工作。深度学习就像玩乐高,掌握它有一定的挑战性,但是入门还是很容易的。

THE END
1.深度学习经典方法深度学习的常用方法这些经典的深度学习方法在不同的领域中都有广泛的应用。卷积神经网络用于图像识别,循环神经网络适用于序列数据的处理,生成对抗网络实现逼真样本的生成,深度强化学习处理智能决策制定者问题,自编码器用于数据压缩与重构,注意力机制实现对关键信息的关注。这些方法的不断发展和创新推动着深度学习领域的进步。 https://blog.csdn.net/m0_73916791/article/details/135119405
2.科学网—[转载]基于深度学习的MRI脑卒中病灶分割方法综述摘 要脑卒中病灶自动分割方法成为近几年的研究热点。为了全面研究用于MRI脑卒中病灶分割的深度学习方法的现状,针对脑卒中治疗的临床问题,进一步阐述了基于深度学习的病灶分割的研究背景及其挑战性,并介绍脑卒中病灶分割的常用公共数据集(ISLES和ATLAS)。然后,重点阐述了基于深度学习的脑卒中病灶分割方法的创新与进展,从网络https://wap.sciencenet.cn/blog-3472670-1422696.html
3.60项基于深度学习的SLAM顶会开源方案汇总(下篇)3D视觉工坊在本文中,我们有兴趣分析这种行为。为此,我们提出了一个新的框架,视觉定位从相对姿态。在这个框架内使用一个经典的基于特征的方法,我们展示了最先进的性能。用不同层次的学习方法代替经典方法,我们然后找出深度学习方法表现不佳的原因。基于我们的分析,我们对未来的工作提出了建议。https://www.shangyexinzhi.com/article/5946490.html
4.Light深度学习赋能光谱成像澎湃号·湃客澎湃新闻三、深度学习方法 计算光谱成像的过程编码采样系统设计和光谱图像重建,深度学习技术可以应用在该过程中的每一个方面。如何对这些不同的技术进行有效分类,是一个关键问题。综述提出根据光的属性进行分类,即将计算光谱成像系统按照编码方式的不同,分成了振幅编码、相位编码和波长编码。 https://www.thepaper.cn/newsDetail_forward_17489049
5.深度学习目标检测方法综述深度学习方法应用到目标检测领域之前, 目标检测领域发展平缓. 在2012年的ImageNet[2]分类任务中, 卷积神经网络的应用使得图像分类任务的效果大大提高, 在此推动下, Girshick等[3]首次在目标检测领域中使用了区域卷积网络(regions with CNN features, R-CNN), 在检测效果上取得了非常巨大的提升. 此后, 深度学习与https://c-s-a.org.cn/html/2022/2/8303.html
6.人脸识别技术全面总结:从传统方法到深度学习机器之心英国赫特福德大学与 GBG Plc 的研究者近日发布了一篇综述论文,对人脸识别方法进行了全面的梳理和总结,其中涵盖各种传统方法和如今风头正盛的深度学习方法。机器之心重点编译介绍了其中的深度学习方法部分,更多有关传统人脸识别方法的内容请参阅原论文。 论文地址:https://arxiv.org/abs/1811.00116 https://www.jiqizhixin.com/articles/2019-02-10-4
7.学术长安华山论剑:“深度学习与大数据感知”国际研讨会专家观点韩崇昭:基于脑认知机理的条件证据理论及其深度学习方法 在网络化系统对智能感知的需求方面,韩崇昭教授介绍,多平台协同作战战术信息系统,需要在武器协同数据链的支持下,将武器平台、传感器平台和指控单元进行有机地交联,完成目标探测与识别,目标跟踪与定位,目标协同精确打击与评估等功能,我国对网络化协同作战的重大需求是未来https://ipiu.xidian.edu.cn/info/1097/1189.htm
8.AI啊,我这里有些羞羞的东西,你要不要看一眼?新闻频道不过,用这些机器学习算法有一点麻烦:每次只能辨别出一个值,所以要针对三种活力不同的精子各运行一次,比较费时间。 再用深度学习方法 试完了传统机器学习方法,再来试试深度学习,用CNN来辨别。 这里不能直接用原始数据,需要提前做一些处理,从视频中提取原始帧,用光流生成帧序列的时间表示。 https://news.hexun.com/2019-12-07/199586680.html
9.基于机器学习的肠道菌群数据建模与分析研究综述(3)提取数据的深层次抽象特征,其中主要包括两部分工作,一是通过机器学习的方法找到潜藏的特征信息标志量[26],如Montassier等[27]使用机器学习方法开发了一种BSI风险指数,该指数结合线性回归算法用于预测BSI发病率;二是采用深度学习方法将原始数据进行重组,例如Zhang等[17]通过浅层自编码器、深层自编码器、变分自编码http://journals.im.ac.cn/html/wswxtbcn/2021/1/tb21010180.htm
10.深度学习模型调优方法(总结)51CTO博客深度学习模型调优方法(总结) 一、总结 一句话总结: 超参数的优化,其它比如正则化(regularization)、丢弃参数(dropout)、提前停止训练(early stopping) 1、如何判断模型好坏? 【查看loss和accuracy】:通过模型训练跑代码,我们可以分别从训练集和测试集上看到这个模型造成的损失大小(loss),还有它的精确率(accuracy)。 https://blog.51cto.com/u_15079076/3828696
11.英特尔助力TechMahindra优化其对话式AI平台性能3. 采用 TTS 模型的深度学习方法 4. 模型架构概述 5. 面向英特尔? 架构的优化方法和性能结果 6. 配置详情 7. 结论 8. 适用的解决方案 Tech Mahindra 与英特尔合作开发了以 Tacotron2 和 Fastspeech2 作为特征生成网络,Waveglow 作为声码器的模型架构。这些架构能在推理期间兼顾合成语音质量和实时率。https://www.intel.cn/content/www/cn/zh/customer-spotlight/cases/sayint-optimization-for-neural-tts.html
12.一文看懂机器学习「3种学习方法+7个实操步骤+15种常见算法」机器学习研究和构建的是一种特殊算法(而非某一个特定的算法),能够让计算机自己在数据中学习从而进行预测。 所以,机器学习不是某种具体的算法,而是很多算法的统称。 机器学习包含了很多种不同的算法,深度学习就是其中之一,其他方法包括决策树,聚类,贝叶斯等。 https://easyai.tech/ai-definition/machine-learning/
13.图像目标分割1概述纯粹的三维数据集是稀缺的,通常可以提供CAD网格或者其他的体元表示如点云等。为分割问题获取三维数据集是困难的,因此很少有深度学习方法可以处理这种数据。 斯坦福2D-3D-S数据集(http://buildingparser.stanford.edu)是一个多模态、大规模室内空间数据集,是斯坦福三维语义分析工作[64]的扩展。提供了多个模态:二维RGBhttps://developer.aliyun.com/article/1208121