神经网络与深度学习西安科技大学

1.什么是神经网络?什么是深度学习?它们和人工智能有何关系?

人工智能的发展经历了逻辑推理、专家系统、机器学习三个阶段。机器学习是人工智能领域中目前最活跃的一个分支,神经网络是机器学习中的一种方法,深度学习又是在神经网络的基础上发展起来的。在最近数年中,计算机视觉、语音识别、自然语言处理、和机器人等领域所取得的惊人的进展,都离不开深度学习,它是这一轮人工智能热潮的核心驱动力量,已经成为人工智能领域最重要的技术之一。深度学习不仅改变了计算领域,也为智能制造、交通物流、医疗健康、文化教育、金融财务、安防警戒、农业、通信、文学/艺术创作等其他多个领域提供了强大的新工具。可以说,深度学习正在、或将要改变科学和人类努力的各个领域。

2.为什么要学习这门课?

近年来,随着大数据的快速积累、计算资源的成熟发展、以及学习算法的发展创新,人工智能技术在多个领域取得重大突破,已经成为经济发展的新引擎,被视为推动现代社会进步的主要核心技术力量之一,它正在为农业、医疗、教育、能源、国防等诸多领域提供大量新的发展机遇。

2017年7月20日,国务院印发《新一代人工智能发展规划》,鼓励高校拓宽人工智能专业教育内容,重视人工智能与数学、计算机科学、物理学、生物学、心理学、社会学、法学等学科专业教育的交叉融合,培养“人工智能×专业”复合型人才。因此,任何专业的学生,都应该掌握一些人工智能的知识。

3.这门课程所采用的深度学习框架是什么?

这门课程主要采用目前最主流的TensorFlow和PyTorch深度学习框架作为实践平台。

TensorFlow就是谷歌公司推出的一款高效的人工智能开源框架,自从2015年11月发布以来,已经成为全世界最广泛使用的深度学习库。很多以前难以实现的大规模人工智能任务,都可以借助它来实现。2019年10月正式发布的TensorFlow2.0版本,是对TensorFlow1.x版本彻底的、革命性的改造,它非常的简单、清晰、好用,并且容易扩展,极大地降低了深度学习编程的门槛,使得普通人也能够体验开发人工智能应用程序的乐趣。随着TensorFlow的发展,一直在更新,先后从1.x更新到2.0、2.4,目前我们课程使用的是TensorFlow2.4版本。

PyTorch是由Facebook开源的神经网络框架,它提供了丰富的工具和库,便于深度学习模型的构建、训练和部署,主要在学术研究领域处于领先地位。同时,PyTorch的代码很简洁、易于使用且内存使用很高效。

4.这门课程的主要内容是什么?学习这门课程后具备什么能力?

课程以神经网络与深度学习的理论及其实例为主线,内容包括Python编程基础、多维数组和数据可视化、TensorFlow2.0/PyTorch深度学习框架基础、回归问题、分类问题、人工神经网络和卷积神经网络。我们将循序渐进、抽丝剥茧的详细介绍算法原理,并为每个重要的理论知识点精心设计了对应的TensorFlow与PyTorch实例,使学习者具备扎实的理论基础和良好的应用能力,能够根据实际任务的需求,合理选择和使用数据,构建、训练和测试模型,并调整模型或参数,优化和改进系统;能够对实验结果进行分析和解释,评估模型精度和误差,具备人工智能应用软件的方案选择、设计和开发能力。

5.这门课提供哪些课程资源?

6.这门课程面向的学习对象?需要有什么基础?

这门课程面向多种学科专业、多层次的学习者。只要具备以下基础,就可以尝试开始学习:

⑴高等数学、线性代数、概率论的基本知识。知道导数、梯度、向量、矩阵、概率等基本概念及运算方法。

⑵学习过“大学计算机基础”或者其他类似的课程,知道计算机系统的基础知识。

⑶学习过任何一门编程语言。了解程序设计的基本方法,能够正确的编写出基本的练习程序。

7.每次开课的内容一样吗?如何查看课程的全部内容?

根据每次开课过程中积累的经验和存在的问题,以及深度学习技术和工具的不断发展,我们的课程一直在持续改进中,每个新的学期,我们都会对课程内容进行适当的调整、更新和补充。其中主要的更新有:

⑴TensorFlow版本的更新:在第2-6次开课中,对TensorFlow安装教程的版本进行多次更新,从1.x版本逐步更新到2.0以及2.4版本。

⑵为所有视频添加了字幕,便于对课程的理解。

⑶内容的补充和完善:在第4-6次开课中,依次补充了卷积神经网络实例、典型的卷积神经网络、AI伦理、TensorFlow.js、TensorFlowLite、PyTorch实例等内容。

⑷不断优化测试题、讨论题和作业题,使其更加贴合课程内容,描述更加严谨规范。

目前正在进行第七次开课,课程每周二更新,如果想要学习最新的课程内容并获得课程证书,建议大家参加第七次课程;如果想提前了解课程的全部内容,可以查看第六次开课。为了便于大家学习,已结束的课程仍然可以浏览课程视频和文档,只是无法提交作业、参与课堂讨论。

8.课程有哪些亮点和特色?

⑴选材先进,理论适度、注重应用实践能力的培养

深度学习是当前人工智能领域最具影响力的研究方向,在各个领域的应用中取得了良好的实践效果。本课程理论适度,并与实践紧密结合,在讲透基本原理讲透的同时,每一个基础理论方法都设计了与之高度匹配的编程实例和作业,。

⑵采用迭代式教学设计,搭建能力提升阶梯

课程遵循“两性一度”标准,采用迭代式教学设计,例如:

①每一个重要的知识点,都提供与之匹配的编程实例以及不断深入的作业题、讨论题和延展题。通过不断提出新的问题,从分析数据、选择属性,到设计模型、优化性能,再到研究性任务,引发学习者自主深入思考。

②在不同的知识点之间,通过对同一个任务的层层迭代,逐渐提升学习者综合运用知识的能力。例如,实例鸢尾花分类、手写数字识别贯穿第6~15讲多个知识点,不断优化;实例波士顿房价回归、鸢尾花分类、手写数字识别、cifar图像分类、猫狗大战等各成系列又层层堆叠优化,帮助学生逐步搭建能力提升阶梯,最终能够设计和实现复杂的人工智能应用。

⑶“高内聚、低耦合”的模块化的内容设计,适用于多层次、多学科专业

面向多元化的社会学习者,将课程内容凝练为高度模块化的80个知识点和25个实例,各模块之间相互独立又相辅相成,不同基础的学习者可以根据实际情况“按需选材,因材施教”。例如,注重理论知识学习的同学,可以忽略实例部分,只浏览理论学习的视频,也是连贯和自成一体的。对于已经掌握理论知识,只是想学习TensorFlow的同学,则可以仅浏览TensorFlow基础和编程实践部分的课程。另外,有一定基础的同学,也可以先完成测试题和作业题,了解自己对知识的掌握情况,然后再根据需要有选择性的浏览课程内容。

由高教社联手网易推出,让每一个有提升愿望的用户能够学到中国知名高校的课程,并获得认证。

THE END
1.人工智能深入了解神经网络 通过Frank La La|2019 年 2 月 神经网络是很多高级的人工智能 (AI) 解决方案的基本元素。但是,很少人取消 derstand 这一概念的核心数学或结构化基础。虽然初始研究神经网络返回日期数十年来,它不是直到最近的计算能力和训练数据集的大小进行它们实际供常规使用。 https://docs.microsoft.com/zh-cn/archive/msdn-magazine/2019/february/artificially-intelligent-a-closer-look-at-neural-networks
2.深度学习轻量级神经网络模型,嵌入式微小设备也能实时检测轻量级神经网络的进步已经彻底改变了计算机视觉在各种物联网(IoT)应用中的使用,涵盖了远程监控和过程自动化。 然而,对于许多这些应用来说,检测小型物体,这是至关重要的,目前在计算机视觉研究中仍然是一个未探索的领域,尤其是在资源受限的嵌入式设备上,这些设备拥有处理器。 https://blog.51cto.com/u_15671528/12791754
3.深度学习&神经网络知识神经网络是一种模仿人脑工作原理的计算模型,它由大量的基本单元节点(神经元)组成,这些节点通过层次化的方式组织成输入层、隐藏层和输出层。每个节点都与其他节点通过权重连接,并且每个节点都有一个激活函数,用于决定该节点是否被激活。隐藏层连接输入层与输出层,对输入信息进行非线性变换来处理信息,输出层也即预测结果https://blog.csdn.net/auiiii/article/details/144338942
4.神经网络在线可视化工具cumtchw神经网络在线可视化工具 https://ethereon.github.io/netscope/#/editorhttps://www.cnblogs.com/cumtchw/p/11576625.html
5.随时间在线训练脉冲神经网络模型的图像数据分类方法与流程对于反馈型脉冲神经网络,构建多组(n-1组)脉冲神经元作为不同的隐层,输入层与隐层和隐层与隐层之间具有前馈连接,最后第n-1层隐层与输出层具有前馈连接,第n-1层隐层与第1层隐层具有反馈连接。 [0046] 以上输入层与隐层、隐层与隐层、隐层与输出层之间的连接均代表任意的线性操作,可以包括全连接的神经网络https://www.xjishu.com/zhuanli/55/202210694741.html
6.BrilliantBrilliant是一个在线学习平台,提供Introduction to Neural Networks课程介绍神经网络知识,让学生理解神经网络的基础知识,学习构建和调节神经网络,并应用神经网络解决实际问题。 Introduction to Neural Networks是Brilliant平台上的一门神经网络入门课程。这门课程面向初学者,介绍神经网络的基本概念、模型与算法。学习者可以在这https://www.aizhinan.cn/tools/2320.html
7.SPSS在线SPSSAU上述表格中,基本信息汇总展示出因变量Y(标签项)的分类分布情况,模型评估结果(包括训练集或测试集)用于模型的拟合效果判断,尤其是测试集的拟合效果,以及提供测试集数据的混淆矩阵结果;模型汇总表格将各类参数值进行汇总,并且在最后附录神经网络模型构建的核心代码。 https://spssau.com/en/helps/machinelearning/neutralnetwork.html
8.在线学习RBF神经网络的模型参考自适应控制器.pdf在线学习RBF神经网络的模型参考自适应控制器.pdf,2001年第2期 般机发展 【文章蕾号) 1005—3751(2001)02—0005—03 在线学习RBF神经网络的模型参考自适应控制器 ModelReferen~~AdaptiveController ofOn—lineLearningRBFNem-alNetworks 朱明星 龚蓬(安徽大学自动化系,https://max.book118.com/html/2017/0321/96259798.shtm
9.在线深度学习:在数据流中实时学习深度神经网络机器之心在线深度学习:在数据流中实时学习深度神经网络 在线深度学习的主要困难是模型的容量、复杂度等设置很不灵活,即模型是静态的,而数据流是动态的。本论文提出了一种适应性的网络框架,结合 HBP 算法,使网络结构能随着数据的流入而逐渐扩展、复杂化。这使得模型同时拥有在线学习和深度学习的优点,并在多种在线学习模型和https://www.jiqizhixin.com/articles/2017-12-30
10.基于RBF在线辨识的神经网络PID控制及其应用基于RBF在线辨识的神经网络PID控制及其应用,RBF辨识,神经网络PID控制,仿真,讨论了RBF辨识网络的控制算法,并提出了一种新型PID控制器,该控制器利用神经元自适应PID的在线参数调整,采用RBF网络对被控对象在线https://wap.cnki.net/qikan-YJDL200604034.html
11.变压器油中水分在线监测的神经网络计算模型期刊摘要:为了对变压器油中的微水含量进行在线监测和建模计算,介绍了变压器油纸绝缘中水分的分布和利用聚酰亚胺薄膜电容式湿度传感器在线监测变压器油中微水含量的原理并在变压器油中微水含量监测的相关理论基础上,提出了一种基于神经网络的在线监测计算模型以评估变压器油中的微水含量.比较油中微水含量的计算值与测量值证明,采用https://d.wanfangdata.com.cn/Periodical/gdyjs200705019
12.7个深度神经网络可视化工具,不可错过!腾讯云开发者社区Netscope 是一个支持 prototxt 格式描述的神经网络结构的在线可视工具。它可以用来可视化 Caffe 结构里 prototxt 格式的网络结构,使用起来也非常简单,打开这个地址http://ethereon.github.io/netscope/#/editor,把你的描述神经网络结构的 prototxt 文件复制到该编辑框里,按 shift+enter,就可以直接以图形方式显示网络的https://cloud.tencent.com/developer/article/1065135
13.神经网络模型结构可视化不用代码的在线网页与软件绘图方法之前向大家介绍了一种基于Python第三方ann_visualizer模块的神经网络可视化方法,大家可以直接点击这篇博客(https://www.jianshu.com/p/5984b97127c5)查看;这方法可以对Dense隐藏层以及MaxPooling层、Dropout层、Flatten层等其它类型的隐藏层加以绘制,功能非常强大,但是需要用代码执行,且在执行前需要将神经网络的https://www.jianshu.com/p/833379a901c6