什么是AdamReLUYOLO?解释深度学习的一些常用术语

激活函数的作用是对输入执行非线性变换,将输入乘以权重并添加到偏置项中。目前最常用的激活函数有ReLU、tanh和sigmoid。

AdamOptimization(Adam优化)

AdaptiveGradientAlgorithm(自适应梯度算法)

AveragePooling(平均池化)

AlexNet

Backpropagation(反向传播)

反向传播是一种用于调整网络权重以最小化神经网络损失函数的常用方法,它在神经网络中从后向前计算,通过对每个激活函数进行梯度下降重新调整权重。

BatchGradientDescent(BGD)

BGD是一种常规的梯度下降优化算法,它更新的是整个训练集的参数。在更新参数前,它必须计算整个训练集的梯度,因此如果数据集很大,BGD可能会很慢。

BatchNormalization

BatchNormalization指的是把神经网络层中的值归一化为0到1之间的值,方便更快训练神经网络。

Bias(偏差)

当模型在训练集上精度欠佳时,它被称为欠拟合。当模型具有高偏差时,它通常不会在测试集上又高准确率。

Classification(分类)

Convolution(卷积)

CostFunction(损失函数)

损失函数又称lossfunction,指的是模型的输出与实际情况之间的差异,这是深度神经网络学习的关键要素之一,因为它们构成了参数更新的基础。通过将前向传播的结果与真实结果相比较,神经网络能相应地调整网络权重以最小化损失函数,从而提高准确率。常用的损失函数有均方根误差。

DeepNeuralNetwork(深度神经网络)

Derivative(导数)

数是特定点处函数的斜率。计算导数的作用是用梯度下降算法将权重参数调整到局部最小值。

Dropout

End-to-EndLearning(端到端学习)

端到端学习指的是算法能够自行解决整个任务,不需要额外的人为干预(如模型切换或新数据标记)。案例:NVIDIA前年发表了一篇论文EndtoEndLearningforSelf-DrivingCars,他们训练了一个只需根据单个前置摄像头的原始图像就能让自动驾驶汽车自行转向的CNN。

Epoch

一个Epoch表示训练集中的每个样本都已经进行过一次完整的前向传播和反向传播。单个Epoch涉及每个训练样本的迭代。

ForwardPropagation(前向传播)

前向传播就是数据被输入神经网络后,经过隐藏层、激活函数,最后形成输出的过程。当节点权重经过训练后,前向传播能预测输入样本的结果。

Fully-Connectedlayer(全连接层)

全连接层指的是和上一层的节点完全连接的神经网络层,它把上一层的输出作为输入,并用其权重转换输入,将结果传递给下一层。

GatedRecurrentUnit(GRU)

Human-LevelPerformance从字面上理解就是人类级别的表现,它表示一组人类专家的最佳表现。作为神经网络性能的一种常用衡量标准,人类表现在改进神经网络的过程中一直发挥着作用。

超参数决定的神经网络的性能,常见的超参数有学习率、梯度下降迭代次数、隐藏层的数量和激活函数。不要将DNN自学的参数、权重和超参数混淆。

ImageNet

ImageNet是一个包含上千个图像及其注释的数据集,它是非常有用的图像分类任务资源。

Iteration(迭代)

迭代指的是神经网络前向传播和反向传播的总次数。例如,假设你的训练集有5个batch,一共训练了2个epoch,那么你就一共进行了10次迭代。

GradientDescent(梯度下降)

梯度下降是一种帮助神经网络决定如何调整参数以最小化损失函数的方法。我们可以用它重复调整参数,直到找到全局最小值。CSDN上翻译了SebastianRuder的《梯度下降优化算法综述》,非常值得阅读。

Layer

Layer指的是一组转换输入的激活函数。如下图所示,神经网络通常会使用多个隐藏层来创建输出,常见的有输入层、隐藏层和输出层。

LearningRateDecay(学习率衰减)

学习率衰减指的是在训练期间改变神经网络的学习率,它反映了学习的灵活性。在深度学习实践中,随着训练进行,学习率一般是逐渐衰减的。

MaximumPooling(最大池化)

最大池化表示只选择特定输入区域的最大值,它通常用于CNN。以减小输入的大小。

LongShort-TermMemory(LSTM)

Mini-BatchGradientDescent

Mini-BatchGradientDescent是一种优化算法,它先把训练数据分成一系列子集,再在上面进行梯度下降。由于这个过程是可以并行的,各个worker可以同时分别迭代不同的minibatch,因此它计算效率更高、收敛更稳健,是batch和SGD的一种有效组合。

Momentum(动量)

Momentum也是一种梯度下降优化算法,用于平滑随机梯度下降法的振荡。它先计算先前采取的步骤的方向的平均方向,并在此方向上调整参数更新。这一术语来自经典物理学中的动量概念,当我们沿着一座小山坡向下扔球时,球在沿着山坡向下滚动的过程中收集动量,速度不断增加。参数更新也是如此。

NeuralNetwork(神经网络)

神经网络是一种转换输入的机器学习模型,最基础的NN具有输入层、隐藏层和输出层,随着技术的不断发展,它现在已经成为查找数据中复杂模式的首选工具。

Non-MaxSuppression(非极大抑制)

RecurrentNeuralNetworks(RNN)

ReLU

ReLU是一个简单的线性变换单元,如果输入小于零,则输出为零,否则输出等于输入。它通常是现在首选的激活函数,可以帮助更快地训练。

Regression(回归)

和分类相对应,回归也是统计学习的一种形式,只不过它的输出是连续的变量,而不是分类值。分类为输入变量分配了一个类,但回归为输入变量分配的是无限多个可能的值,而且它通常是一个数字。常见的回归任务有房价预测和客户年龄预测。

RMSProp随机梯度下降优化方法的扩展,它以每个参数的学习率为特征,根据参数在先前迭代中的变化速度来调整学习率。

Parameters(参数)

参数即在应用激活函数之前转换输入的DNN的权重。神经网络的每一层都有自己的一组参数。利用反向传播算法,我们可以通过调整参数最小化损失函数。

Softmax

Softmax函数,或称归一化指数函数,是逻辑函数的一种推广,常用于DNN的最后一层。它的本质就是将一个K维的任意实数向量压缩(映射)成另一个K维的实数向量,其中向量中的每个元素取值都介于(0,1)之间。它非常适合有两个以上输出的分类任务。

StochasticGradientDescent(随机梯度下降)

随机梯度下降法是梯度下降法在机器学习领域的一个变种,它通过抽样的梯度来近似表示真实的梯度,从而避免大量的计算。

SupervisedLearning(监督学习)

TransferLearning(迁移学习)

迁移学习是一种将一个神经网络的参数用于不同任务而无需重新训练整个网络的技术。它的具体方法是使用先前训练过的网络中的权重并删除输出层,然后用你自己的softmax或logistic图层替换最后一层,再次训练网络。之所以有效,是因为较低的层通常会检测到类似的边缘,这些边缘对其他图像分类任务也是有效的。

UnsupervisedLearning(无监督学习)

无监督学习也是机器学习的一种形式,但是它的输出类是未知的。常见的无监督学习方法有GAN和VAE。

ValidationSet(验证集)

验证集通常被用于寻找深度神经网络的最佳超参数。训练好DNN后,我们可以在验证集上测试不同的超参数组合,然后选择性能最好的组合在测试集上做最终预测。在使用过程中,注意平衡各集的数据占比,比如在有大量数据可用的情况下,训练集的数据占比应该高达99%,而验证集合测试集应该各占0.5%。

VanishingGradients(梯度消失)

梯度消失是神经网络到达一定深度后会出现的问题。在反向传播中,权重根据其梯度或衍生物进行调整,但在深度神经网络中,较早层的梯度可能会变得非常小,以至于权重根本不会更新。避免这个问题的一种做法是使用ReLU激活函数。

Variance(方差)

当DNN过拟合训练数据时,我们称这之中存在方差。DNN无法将噪声与模式区分开来,并对训练数据中的每个方差进行建模,具有高方差的模型通常无法准确推广到新数据。

VGG-16

VGG-16是一种CNN流行网络架构,它简化了AlexNet,总共有16层。一些研究已经证实,许多经预训练的VGG模型可以通过迁移学习被用于其他新任务。

XavierInitialization(Xavier初始化)

YOLO

原文标题:什么是Adam/ReLU/YOLO?这里有一份深度学习(.ai)词典

长沙市望城经济技术开发区航空路6号手机智能终端产业园2号厂房3层(0731-88081133)

THE END
1.练习构建和训练神经网络现在,调用fit函数来训练神经网络: Python hist = model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=5, batch_size=128) 训练大约需要 6 分钟,或每个时期需要 1 分钟以上。epochs=5告诉 Keras 通过模型执行 5 次向前和向后传递。 凭借每次传递,模型将从训练数据中学习并使用测https://docs.microsoft.com/zh-cn/learn/modules/analyze-review-sentiment-with-keras/2-build-and-train-a-neural-network/
2.迁移学习与在线学习(1)而要入门深度学习,CNN和RNN作为最常用的两种神经网络是必学的。网上关于深度学习的资料很多,但大多知识点分散、内容不系统,或者以理论为主、代码实操少,造成学员学习成本高。本门课程将从最基础的神经元出发,对深度学习的基础知识进行全面讲解,帮助大家迅速成为人工智能领域的入门者,是进阶人工智能深层领域的基石。https://download.csdn.net/learn/30851/457657
3.BrilliantBrilliant是一个在线学习平台,提供Introduction to Neural Networks课程介绍神经网络知识,让学生理解神经网络的基础知识,学习构建和调节神经网络,并应用神经网络解决实际问题。 Introduction to Neural Networks是Brilliant平台上的一门神经网络入门课程。这门课程面向初学者,介绍神经网络的基本概念、模型与算法。学习者可以在这https://www.aizhinan.cn/tools/2320.html
4.在线深度学习:在数据流中实时学习深度神经网络机器之心在线深度学习:在数据流中实时学习深度神经网络 在线深度学习的主要困难是模型的容量、复杂度等设置很不灵活,即模型是静态的,而数据流是动态的。本论文提出了一种适应性的网络框架,结合 HBP 算法,使网络结构能随着数据的流入而逐渐扩展、复杂化。这使得模型同时拥有在线学习和深度学习的优点,并在多种在线学习模型和https://www.jiqizhixin.com/articles/2017-12-30
5.在线网课学习课堂《神经网络理论及应用(北工商)》单元测试考核在线网课学习课堂《神经网络理论及应用(北工商)》单元测试考核答案.docx,注:不含主观题 第1题 判断题 (1分) 人工神经元是一个多输入、多输出的信息处理单元 第2题 判断题 (1分) 人工神经元数学模型决定该节点本身的信息处理能力 第3题 单选题 (1分) 人工神经网络的激活函数https://max.book118.com/html/2022/0429/8132040142004075.shtm
6.在线学习课堂网课《机器学习初步(南京)》单元测试考核答案(1分) BP算法的每一轮采用的是什么学习规则? A 广义感知机学习规则B 广义最小二乘学习规则C 广义决策树学习规则D 广义支持向量机学习规则 第3题 填空题 (1分) BP算法的全称为___(7个字)。 神经网络-章节测试 第1题 单选题 (1分) 下列关于BP算法使用小步长优化神经网络的说法中正确的是哪个? A 一定https://www.ddwk123.cn/archives/654288
7.2什么是神经网络(机器学习)易学在线课堂1 人学习 手机版扫码 扫码访问手机版 课程目录 学员 1、科普: 人工神经网络 VS 生物神经网络04:39 学员 2、什么是神经网络 (机器学习)00:00 学员 3、神经网络 : 梯度下降 (Gradient Descent in Neural Nets)04:07 学员 4、科普: 神经网络的黑盒不黑04:55 学员 5、1 why?01:13 学员 6、2 安装 (https://bbs.easyaiforum.cn/lesson-2863.html
8.记忆工场Memoryer神经网络背单词软件下载背单词软件背单词软件脑与神经科学家、认知心理学家与人工智能专家 让我们一起来探究人类大脑认知与记忆的奥秘 开启神经网络学习的奇幻之旅 Memoryer 记忆者 全新一代单词记忆软件 点击查看 脑语者 全新一代语法学习软件 点击查看 记忆手册 了解您的大脑,理解您的记忆机理 点击查看 https://www.memoryer.com/
9.第五章神经网络(周志华机器学习)学习总结而解决非线性可分的问题(如异或问题),需要考虑使用多层功能神经元。 5、多层网络 5.1 什么是多层网络 多层网络:只需要包含隐层,即可称为多层网络。 神经网络的学习过程,就是根据训练数据来调整神经元之间的连接权(connection weight)以及每个功能的阈值,换言之,神经网络“学”到的东西,蕴涵在连接权和阈值中。 https://www.jianshu.com/p/1b1bf5fc0422
10.学习笔记:神经网络学习算法腾讯云开发者社区主流的神经网络学习算法(或者说学习方式)可分为三大类:有监督学习(SupervisedLearning)、无监督学习(Unsupervised Learning)和强化学习(Reinforcement Learning),如下图所示。 注:有监督学习、无监督学习和强化学习并不是某一种特定的算法,而是一类算法的统称。 https://cloud.tencent.com/developer/article/1610502
11.神经网络与深度学习特别是最近这几年,得益于数据的增多、计算能力的增强、学习算法的成熟以及应用场景的丰富,越来越多的人开始关注这个“崭新”的研究领域:深度学习。深度学习以神经网络为主要模型,一开始用来解决机器学习中的表示学习问题。但是由于其强大的能力,深度学习越来越多地用来解决一些通用人工智能问题,比如推理、决策等。目前,http://nndl.github.io/
12.数据驱动的精准化学习评价机制与方法Li等(2020)利用神经网络对采集到的学生课堂学习图像数据和学习轨迹进行分析,以判断学生在学习过程中的参与度。Chan等 (2020)利用深度学习技术分析学习过程中产生的多模态数据,对学生的情感态度、学业投入、课堂专注等进行量化评价,进而分析学习者的学习动机。https://www.fx361.com/page/2021/0226/7597189.shtml
13.大数据机器学习清华大学4.条件随机场的学习算法 5.条件随机场的预测算法 17第十七章 概率图模型的学习与推断 开头 1.精确推断法:变量消去法和信念传播法 2.近似推断法:MCMC和变分推断 18第十八章 神经网络和深度学习 1.神经网络的发展历程 2.神经网络的基本概念以及常见的神经网络(一) https://www.xuetangx.com/courses/course-v1:TsinghuaX+70240403+2019_T1/about
14.AI深度强化学习落地方法七步曲2——状态空间篇回报函数篇如果我们提前对原始信息做些二次加工,人为提炼出与学习目标更相关的因素,相当于替神经网络干了一部分活儿,虽然不那么elegant,但往往能收到奇效。举个极端例子,直接告诉agent钥匙的相对坐标在哪儿,一定比神经网络通过原始图像更容易学到吃钥匙的操作。由于强化学习的优化目标是折扣累加的长期收益,这使得reward起作用的https://www.shangyexinzhi.com/article/4228946.html