商务数据分析(第4次开课)大学慕课

本课程主要介绍深度学习的基本原理、卷积神经网络、循环神经网络、生成对抗网络、注意力机制等基本方法及其典型应用领域,并借助机器学习开源平台TensorFlow实现深度学习在证券趋势预测、声音质量评价、电子推荐、目标检测、社交网络情感分析等多个典型领域的应用。

——课程团队

课程概述

1.我为什么要学习这门课?

2.这门课的主题是什么?

在前面2次介绍传统的机器学习理论的基础上,讨论深度学习的典型算法原理与应用(具体美容请参考下面课程大纲),为实践打下坚实的基础。

3.学习这门课可以获得什么?

4.这门课有什么特色和亮点?

深度学习是一门理论和实践并重的课程,其中的内容比较多,很多算法也有一定的难度。深度学习的应用也需要一定的经验和技巧。本课程参阅了大量文献资料,结合过去多年的数据分析研究和项目实践,深入浅出,学生在可以钻研深度学习的算法以及应用。课程通过大量的选择题、填空和判断题检验和巩固学员对基本知识的理解。

5.这门课的学习方法建议

建议结合教材《机器学习》(人民邮电出版社,2018)、《机器学习案例实战》(人民邮电出版社,2019)、《Python机器学习实战案例》(清华大学出版社,2019)学习,先结合视频了解基本算法,然后通过各单元的测试题和作业巩固基本概念和算法,再通过具体的案例解读思路和代码,巩固算法。线下还要参考实战教材动手实验和实践练习,循序渐进。

6.课程守则(建议)

欢迎大家选修课程,请各位按照课程首页大纲的内容,根据课程内容的顺序,每周结合视频和推荐的配套教材,按时完成基本算法内容学习,并结合单元测试和章节练习,巩固基本概念和算法。在此基础上,完成每单元的实验,并可以进一步阅读推荐的实战案例,理解机器学习的思路以及每个步骤可能遇到的问题和技巧。有问题欢迎在课程讨论区讨论。

授课目标

授课团队

赵卫东董亮

课程大纲

01神经网络基础

理解前馈神经网络的结构、梯度下降法以及网络训练调优的基本方法,并能应用前馈神经网络解决实际问题。建议5个学时。打*的内容属于高级版,后面陆续推出。除了第7章外,其余章节均由赵卫东老师负责。

1.1神经网络简介

1.3神经网络效果评价

1.4神经网络优化

1.5银行客户流失预测

1.6练习题

02深度学习在人工智能系统的应用

通过众多的案例,了解深度学习的典型应用场景。建议2个学时。

2.1深度学习典型应用场景

2.2深度学习应用案例分析

2.3练习题

03卷积神经网络

理解卷积的内涵,熟悉常用的10几种卷积神经网络的结构、训练方法以及典型场景的应用。建议10个学时。

3.1卷积的理解—卷积和池化

3.2常见的卷积模型

@Lenet-5、AlexNet、VGGNet、GoogleLeNet、ResNet等

@Inceptionv2-v4、DarkNet、DenseNet、SSD等*

@MobileNet,ShuffleNet*

3.3胶囊网络*

3.4CNN卷积神经网络应用案例

3.5目标检测常用算法

@R-CNN、FastRCNN、FasterRCNN、YOLOv1-v3等

3.5图像分类

3.6动物识别

3.7物体检测

3.8人脸表情年龄特征识别*

3.9练习题

04循环神经神经网络

理解循环神经网络以及变种LSTM、GRU的结构、训练方法以及典型场景的应用。建议6个学时。

4.1RNN基本原理

4.2LSTM

4.3GRU

4.4CNN+LSTM模型

4.5Bi-LSTM双向循环神经网络结构

4.6Seq2seq模型

4.7注意力机制

4.8自注意力机制*

4.9ELMo、Transformer等*

4.10BERT、EPT、XLNet、ALBERT等*

4.11机器翻译

4.12练习题

05生成对抗网络

理解生成对抗网络的结构、训练方法以及典型场景的应用。建议5个学时。

5.1生成对抗网络模型

5.2GAN的理论知识

5.3DCGAN

5.4自动生成手写体

5.5CycleGAN

5.6WGAN*

5.7练习题

06深度学习神经网络案例

学会使用卷积神经网络、循环神经网络、生成对抗网络的常用算法的应用,解决实际问题,并能做创新性的应用。建议5个学时。

6.1股票走势预测

6.2文本情感分类

6.3图像风格转移

6.4机器翻译

6.5练习题

07强化学习

理解强化学习的基本概念和原理,了解强化学习的典型应用场景。建议2个学时。此部分由董亮老师负责讲授。

7.1强化学习基本原理

7.2强化学习常用模型

7.3强化学习典型应用

7.4深度Q网络*

7.5练习题

08项目驱动的深度学习方法

理解如何结合实际项目,强化机器学习和深度学习理论知识的深入理解,体会深度学习解决实际问题的技巧和技能。建议2个学时,加1个学时的讨论。

课时

8.1项目驱动的深度学习之路

8.2领域问题驱动的机器学习深度教学法

预备知识

学习本课程前需要掌握机器学习,尤其是前馈神经网络的基本原理、常用算法,也需要有较扎实的统计学、高等数学、线性代数、Python编程等基础。强烈建议学完第2次的开课内容再学习本次课程。

证书要求

1.按时学习每章节的视频

2.完成每章节的测试(以选择题为主,每章还至少有一个实验,一个互评的讨论题)

3.积极参加讨论和互评(每学期至少5次)

4.通过课程的结业测试(前面三项占总成绩的25%,结业考试占总成绩的75%)

注意:纸质证书需要付费申请(总分60分以上合格)

参考资料

基本的阅读教材:

1.赵卫东,董亮编著.机器学习.北京:人民邮电出版社,2018(教材,python语言)

2.赵卫东.机器学习案例实战.北京:人民邮电出版社,2019(实验和实训,python语言)

3.赵卫东,董亮著.Python机器学习实战案例.北京:清华大学出版社,2019(实验和实训,python语言)

参考资料:

龙龙.TensorFlow2.0实战案例

常见问题

1.没有基础可以学习吗?

答:强烈建议请先学习第1-2次的课程再学习,本课程需要掌握必要的高等数学、线性代数和统计基础知识以及比较扎实的机器学习基础知识。没有机器学习基础的学员请一定先学习传统的机器学习算法。此外,还需要掌握Python编程基础。

2.深度学习算法那么多,我怎么学习?

答:可以先熟悉基本的方法和算法,培养对数据分析的兴趣,奠定一定的基础后,逐步学习较难的算法。特别推荐通过案例和应用学习。有关机器学习技能的培养很重要,具体的方法请参考论文:数据分析类课程的技能培养方法探讨和基于项目实践的机器学习课程改革(《计算机教育》,2019.9)。

3.如何使用课程中提到的算法解决实际问题?

答:可以课后先阅读和调试一下经典的案例和代码,然后尝试解决一些简单的问题,通过参加比赛、各种技术研讨、仿真型的项目,直至参加实际项目,这是一个循序渐进的过程,需要耐心、兴趣和毅力。

4.本课程怎么学习?

答:本课程是深度学习的基本课程,适合有一定机器学习基础的学员,配合教材讲解实用的内容,与线下的实训练习结合。建议采用翻转教学方式,结合配套教材,首先学习在线的视频,课下结合实际项目案例讨论算法的应用以及其中关键技能,并通过实验练习数据分析的思维和技能。

5.本课程有无配套的实验资源?

答:有的,配套教材封后扫码可以下载,网课也有部分实验内容可以下载练习。

6.实验是否有推荐的平台和工具?

答:以下的机器学习平台和工具可以使用:

7.本课程采用什么语言?

答:Python3语言。

8.课程总体难度如何?

答:属于深度学习基本的内容,难度总体属于初中等,希望学员理解机器学习基础知识,可以先选读本课程第二次开课的内容

9.本课程是否有实战的内容?

答:实战练习的课程大家可以选修机器视觉与边缘计算应用课程。并以推荐的2本实战案例线下练习,提供源代码和数据。

THE END
1.大模型保姆级教程:从入门到实战(非常详细)大模型最强学习教程,收藏这一在人工智能领域,大语言模型(Large Language Models, LLMs)正迅速成为一个热点话题。 本学习路线旨在为有基本Python编程和深度学习基础的学习者提供一个清晰、系统的大模型学习指南,帮助你在这一领域快速成长。 本学习路线更新至2024年02月,后期部分内容或工具可能需要更新。 https://blog.csdn.net/z551646/article/details/144393730
2.深度学习基础案例2案例解释在下面模型构建流程中 3、模型构建流程 本文构建的CNN神经网络,有三层卷积层和三层池化层,分类类别为10类。 Model的构建函数,作用是分别构建卷积层、池化层和全连接层 Model中forward()函数,作用是构建CNN神经网络, 卷积层的计算:以卷积层一nn.Conv2d(3, 64, kernel_size=3)为例 参数解释:输入通道https://www.ctyun.cn/zhishi/p-440740
3.深度学习算法介绍及简单实现mb6757d9e881a2b的技术博客对深度学习有了一定的了解之后,我们会知道深度学习离不开神经网络,可以从多层感知器(Multilayer Perceptron,简称 MLP)神经网络入手。 MLP是最基本的神经网络模型之一,它的结构比较简单,涉及的很多算法是我们学习更复杂的模型的基础,易于理解和实现,同时又有很好的可扩展性和通用性,可以应用于分类、回归等多种任务。学习https://blog.51cto.com/u_17183045/12791354
4.BAT机器学习面试1000题系列(二)122.怎么理解决策树、xgboost能处理缺失值?而有的模型(svm)对缺失值比较敏感? 知乎解答 123.为什么引入非线性激励函数? @Begin Again,来源: 知乎解答 如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性https://www.jianshu.com/p/4a7f7127eef1
5.深度学习高手笔记卷1:基础算法本书通过扎实、详细的内容和清晰的结构,从算法理论、算法源码、实验结果等方面对深度学习算法进行分析和介绍。本书共三篇,第一篇主要介绍深度学习在计算机视觉方向的一些卷积神经网络,从基础骨干网络、轻量级 CNN、模型架构搜索 3 个方向展开,介绍计算机视觉方向的里程碑算法;第二篇主要介绍深度学习在自然语言处理方向的https://www.epubit.com/bookDetails?id=UB7d8623610d375
6.机器学习实战从零开始深度学习(通过GPU服务器进行深度学习)3.3 训练模型 3.4 采用不同的loss函数 3.5 使用更复杂的卷积神经网络 《之一》 0 写在前面 0.1. 利用GPU加速深度学习疫情期间没有办法用实验室的电脑来跑模型,用领取的腾讯云实例来弄刚刚好。发现如果没有GPU来跑的话真的是太慢了,非常推荐利用GPU加速深度学习的训练速度。 如果采用GPU的话,训练函数train_modelhttps://cloud.tencent.com/developer/article/1990845
7.数据酷客,中国领先的大数据教育云平台机器学习研究人员撰写的有用教科书如Christopher Bishop的标准教科书(Bishop,2006),以及(Goodfellow等人,2016)的《深度学习》,该书侧重于深度学习的理论和基础,并涵盖了当今研究的许多方面。各种在线教程和讲座对于获得基本概述和开始该主题很有用。 要了解1980年代至1990年代在神经网络统计物理学方面取得的理论进展,我们http://static.cookdata.cn/community/detail/107/
8.多层感知器实战:从入门到实践的深度学习之旅多层感知器(MLP)是深度学习领域的基础神经网络结构,通过多层节点的前馈计算,实现复杂任务的非线性分类与回归。学习MLP实战对深度学习新手至关重要,它不仅加深理解神经网络原理,还提供模型训练、调试与优化的关键技能铺垫,为深入研究其他深度学习模型打下坚实基础。 https://www.imooc.com/article/356464
9.神经网络与深度学习应用实战.docx神经网络与深度学习应用实战目录 h 基础篇 h 第1章 时代崛起 h 1.1 概要 h 1.1.1 基本概念 h 1.1.2 深度学习与机器学习的关系 h 1.1.3 深度学习与人工智能的关系 h 1.2 历史发展 h 1.2.1 神经网络https://www.renrendoc.com/paper/303114899.html
10.详情项目公示基于深度学习的唇语识别算法的发展标志着该领域的一次重大进步。这一阶段的研究摆脱了传统方法基于先验知识的限制,通过自动学习唇部特征,显著提升了识别准确性和鲁棒性。在深度卷积神经网络(DCNN)应用于唇部视觉特征提取的研究中,根据卷积核的维度,这一领域的方法可被细分为四种主要类型[6]:基于二维卷积神经网络(2D https://sjjx.hhu.edu.cn/hhu/CXCY/HHU/Item/Detail/e804030f-2c21-4bdc-bb35-e27cee49ec6d
11.JACS扩大药物化学家在药物发现中的作用范围,提高药物开发效率第二天 上午 同源建模 1.同源建模原理介绍 1.1同源建模的功能及使用场景 1.2同源建模的方法 2.Swiss-Model同源建模; 2.1同源蛋白的搜索(blast等方法) 2.2蛋白序列比对 2.3蛋白模板选择 2.4蛋白模型搭建 2.5模型评价(蛋白拉曼图) 2.6蛋白模型优化 实例讲解与练习:用2019-nCoVspike蛋白序列建模,根据相应参数和方法评价https://news.yaozh.com/archive/40954