基于集成网络的离线到在线强化学习

强化学习(ReinforcementLearning,RL)有两种基础的训练范式:在线强化学习(OnlineRL)和离线强化学习(OfflineRL)。在线强化学习需要让智能体和环境进行交互,利用收集到的数据同步进行训练,但在环境中进行探索的开销很大;离线强化学习不需要和环境交互,直接利用已有的离线数据进行训练,但这种范式训练的智能体会受限于离线数据的质量和覆盖范围。

基于此,研究者提出了离线到在线强化学习(Offline-to-onlineRL)训练范式,先利用已有的离线数量训练得到离线策略,然后将其应用到在线环境进行少量步数的微调。这种范式相比于前两者,一方面通过收集少量的在线数据,能够突破离线数据的限制,更贴近实际场景;另一方面在线阶段的微调是以离线策略为起点,相比于从零开始的在线强化学习,只需要非常少量的交互就能快速收敛。这一研究领域主要研究两个问题,一个是分布偏移引起的性能下降,就是如果直接将离线策略应用到在线环境进行微调,会在微调初期出现性能的急剧下降;另一个是在线优化效率,由于在线交互的开销很大,需要用尽可能少的交互次数实现尽可能大的性能提升,这两者可以归结于稳定性和高效性。

在IJCAI2024上,哔哩哔哩人工智能平台部联合天津大学将集成Q网络(Q-ensembles)引入到离线到在线强化学习训练范式中,提出了基于集成网络的离线到在线强化学习训练框架(ENsemble-basedOffline-To-OnlineRL,ENOTO)。ENOTO以集成Q网络为基础,充分利用其衡量的不确定性来稳定两个阶段的过渡和鼓励在线探索,可以结合多种强化学习算法作为基线算法,在离线到在线强化学习设定下提升稳定性和学习效率,具有较好的泛用性。团队在强化学习的经典环境MuJoCo、AntMaze任务和多种质量的数据集上对ENOTO进行了广泛的实验验证,和以往的离线到在线强化学习算法相比,很大程度地提升了稳定性和学习效率,在大部分数据集上的累积收益提升约有10%-25%。

02动机

对于早期的离线强化学习算法,如ConservativeQ-Learning(CQL)[1],会显式惩罚分布外样本的Q值,鼓励策略选择数据集内的动作,而这种思想在DoubleDQN中就有提到。因此我们可以将这里的Q网络从2个增加到N个,这就是集成Q网络。令人惊讶的是,这种简单的改变对于离线到在线强化学习的提升却是非常明显的。我们首先进行了一项验证性实验,使用CQL这个被广泛认可的代表性离线强化学习算法作为基线算法,在经典的强化学习环境MuJoCo上进行实验,实验结果如图1所示。离线到在线强化学习训练有两种很简单的方法,一个是在线阶段继续复用离线强化学习算法,也就是这里的CQL→CQL,但由于离线强化学习算法的保守性,在线优化效率会很低,即图1(a)中的红线;另一个是切换到在线强化学习算法,也就是CQL→SAC[2],但是这种目标函数的切换会导致性能波动,即图1(a)中的橙线。而引入集成Q网络后,CQL-N→SAC-N算法可以在确保稳定性的同时,提升一定的学习效率,即图1(a)中的黑线。

图1集成Q网络在离线到在线强化学习训练框架中的验证性实验

我们还可以通过可视化的方式来分析集成Q网络的优势。首先我们将CQL→SAC和CQL-N→SAC-N在在线微调阶段的Q值变化过程进行可视化,如图1(b)所示,CQL→SAC这样直接切换优化目标的方式确实会导致Q值的高估并且非常不稳定,而引入集成Q网络之后,由于SAC-N仍然具有保守低估Q值的能力,其相比于SAC算法的Q值也就会偏小并且保持相对稳定的变化。

值得注意的是,CQL-N→SAC-N不仅能够相比于CQL→SAC提升稳定性,实现稳定的离线到在线强化学习训练,而且相比于CQL→CQL还能提升一定的学习效率。针对这一现象,我们通过分析SAC-N和CQL在在线微调阶段的动作选择区间来进行解释说明。具体来说,我们比较了SAC-N、CQL和随机策略在在线微调过程中采取的动作相比于离线数据集内动作的距离。结果如图1(c)所示,SAC-N能够比CQL选择更广范围的动作,这意味着CQL-N→SAC-N能够在在线微调过程中进行更充分的探索,也就有着更高的学习效率。

03方法

ENOTO框架可以细化为三步渐进式的优化,仍然在经典的强化学习环境MuJoCo上进行实验,但这里展示的是在所有任务和数据集上的综合结果,如图2所示。

图2ENOTO的三步渐进式优化

第一步,在已有离线强化学习算法的基础上,我们使用集成Q网络连接离线训练阶段和在线微调阶段,将离线阶段算法和在线阶段算法中使用的Q网络拓展为N个,然后选择所有Q网络中的最小值作为最终的目标Q值进行更新。这一步的主要目的是利用集成Q网络提升过渡阶段的稳定性,当然也提升了一定的学习效率。

第二步,在确保稳定性的基础上,我们考虑提升在线优化效率。第一步的目标Q值计算方法使用的MinQ,也就是N个Q网络选最小值作为目标Q值,但是这种方法对于在线强化学习来说还是太过保守,因此我们又研究了另外几种目标值计算方法,经过实验比较最终选择WeightedMinPair作为ENOTO的目标Q值计算方式。

第三步,我们还可以利用集成Q网络的不确定性来鼓励在线阶段的探索,进一步提升学习效率。具体来说,我们使用集成Q网络的标准差来衡量不确定性,在选择动作时不仅会考虑Q值的大小,还会考虑不确定性的大小,通过超参数调整权重来选择出最终的动作。因为见得少的动作的Q值估计不准,不确定性也会更大,这就是ENOTO中基于不确定性的在线探索方法。

图3ENOTO框架

如图3所示,ENOTO框架和经典离线到在线强化学习训练范式的框架相同,也分为离线训练和在线微调两个阶段。首先在离线训练阶段,以离线强化学习算法为基础,通过引入集成Q网络,利用已有的离线数据集训练得到1个策略网络和N个Q网络;然后在线阶段迁移离线阶段的策略网络和Q网络作为在线微调的起始状态,在确保稳定性的同时,仍然基于集成Q网络进行设计,通过使用新的目标Q值计算方法和基于不确定性的在线探索方法来提升在线微调阶段的学习效率。整个ENOTO框架以集成Q网络贯穿始终,通过多种训练机制的设计实现了稳定高效的离线到在线强化学习训练。

04实验

我们首先选择强化学习领域广泛使用的MuJoCo(Multi-JointdynamicswithContact)[3]作为验证算法的实验环境,在其中的三种运动控制任务HalfCheetah、Walker2d、Hopper进行实验验证。作为离线到在线强化学习训练范式的第一阶段,离线训练需要有离线数据,我们使用离线强化学习领域广泛使用的D4RL(DatasetsforDeepData-DrivenReinforcementLearning)[4]数据集用于离线训练,并且为了证明方法的泛用性,我们选择了不同质量的离线数据集进行实验验证,包括medium、medium-replay、medium-expert这三类离线数据集。对于baseline,我们选择了离线到在线强化学习研究领域中的经典算法、性能优异算法以及一些在线强化学习算法进行比较。

图4MuJoCo实验结果

然后,我们在难度更高的导航任务AntMaze上进行实验验证。具体来说,我们使用AntMaze任务中三种不同难度的迷宫进行实验,包括umaze、medium、large,三种迷宫从易到难,能够从不同层面检验算法的各项指标。而作为用于离线训练的离线数据集,我们同样使用D4RL数据集。在D4RL数据集中收集了两类的AntMaze数据:play和diverse。因此,我们在AntMaze任务的large-diverse、large-play、medium-diverse、medium-play、umaze-diverse和umaze这6个数据集上进行实验验证。同时,为了验证ENOTO对于多种基线算法的适配性,我们在这里使用ENOTO-LAPO(ENOTO在LAPO[10]上的实例化)进行实验。由于Antmaze是一个更具挑战性的任务,大多数离线强化学习方法在离线阶段难以取得令人满意的结果,因此我们仅将我们的ENOTO-LAPO方法与三个有效的基线方法(IQL、PEX和Cal-QL)在此任务上进行比较。

图5AntMaze实验结果

图5展示了ENOTO-LAPO和基线方法在在线微调阶段的性能表现。首先,LAPO在离线阶段表现优于IQL,为在线阶段提供了更高的起点,特别是在umaze和mediummaze环境中,它几乎达到了性能上限。而在线微调阶段由于离线策略的约束,IQL表现出较慢的渐近性能。基于IQL,PEX通过引入从头训练的新策略增强了探索程度,但这些策略在早期在线阶段的强随机性导致了性能下降。需要注意的是,尽管IQL和PEX具有相同的起点,PEX在大多数任务中表现出更严重的性能下降。关于Cal-QL算法,类似于原始论文中描述的结果,它在Antmaze环境中表现出强劲的性能,显著优于其在MuJoCo环境中的表现。值得注意的是,与基线方法IQL和PEX相比,Cal-QL展示了更好的稳定性和学习效率。对于我们提出的ENOTO框架,我们证明了ENOTO-LAPO不仅可以提升离线性能,还能在保持离线性能不下降的情况下,实现稳定且快速的性能提升。

05总结

本项工作在离线到在线强化学习中引入了集成Q网络作为训练机制,通过构建多个Q值估计网络来捕捉不同数据分布偏移情况下的多样性,提出了ENOTO训练框架。在离线训练阶段,ENOTO让集成Q网络从离线数据中学习多个Q值估计,以适应不同数据分布偏移情况,然后在在线微调阶段整合多个Q值估计,生成稳健的在线策略。在确保稳定性的基础上,我们重新设计了目标Q值计算方法,以在保持稳定性的同时提升学习效率。此外,我们利用Q值的不确定性信息,鼓励智能体探索不确定性较高的动作,从而更快地发现高性能策略。实验结果表明,ENOTO在强化学习经典环境MuJoCo和AntMaze上不仅可以提升离线性能,还能在保持离线性能不下降的情况下,实现稳定且快速的性能提升。这种方法使得离线智能体能够快速适应现实环境,提供高效且有效的在线微调。

THE END
1.有关循环神经网络的详细内容- 循环神经网络是一类用于处理序列数据的神经网络。与传统的前馈神经网络不同,RNN具有循环连接,能够对序列中的历史信息进行记忆和利用。它的神经元不仅接收当前输入,还接收来自上一时刻的隐藏状态作为输入,这种结构使得它在处理具有时间序列或序列依赖关系的数据时非常有效。 https://blog.csdn.net/m0_63243562/article/details/144358010
2.机器学习——神经网络与深度学习:从基础到应用神经网络是一类仿生算法,通过连接不同的节点(即神经元),实现信息的传递和处理。每个神经元都能接收多个输入信号,经过加权求和后通过激活函数产生输出。神经网络最早于20世纪40年代提出,但直到深度学习技术兴起,才得以广泛应用。https://cloud.tencent.com/developer/article/2456527
3.科学网—[转载]群视角下的多智能体强化学习方法综述该类问题的研究是为了帮助智能体之间达成合作交流或竞争的目的,在自主学习的基础上,增加可交流模块,学习何时交流、如何交流等。此部分工作通常考虑部分可观环境中的一组协作智能体,其中智能体需要通过信息交互来最大化它们的联合回报。Foerster等人[22]提出了RIAL和DIAL算法,两种方法都是利用神经网络拟合值函数以及智能体https://blog.sciencenet.cn/home.php?mod=space&uid=3472670&do=blog&id=1422698
4.2020届计算机科学方向毕业设计(论文)阶段性汇报本次汇报将主要更新建图算法设计,深度学习模型设计方案、以及在两个关系抽取数据集上的初步实验进展;在训练调优方向,稳定整体训练过程并减少数据分布不平衡带来的影响,提升模型整体表现;继续探索针对知识图谱子图的图神经网络更新策略,利用好关系类型在三元组表征方式中的信息,高效挖掘高阶的结构化关系知识。 https://zhiyuan.sjtu.edu.cn/html/zhiyuan/announcement_view.php?id=3709
5.强化学习笔记(1.0)【3】另一种分类方式,在线学习和离线学习 在线学习:本人在场,本人边玩边学习(on-policy)比如:Sarsa 离线学习:本人可以不在场,本人或者其他人玩,不必边玩边学习(off-policy) Sarsa--在线学习 Q learning,Deep-Q-Network--离线学习 3.为什么要用强化学习 强化学习(Reinforcement Learning)是一个机器学习大家族的分https://www.ctyun.cn/zhishi/p-419744
6.融合用户属性信息的冷启动推荐算法AET在离线训练时,首先使用用户的历史评分数据做矩阵分解,分析用户和商品的潜在语义,可以视作用户的潜在兴趣和商品的潜在用途。然后使用用户的属性数据(如性别、年龄、城市等)和上述提取的用户潜在兴趣训练神经网络。 在线给出推荐预测时,使用上文训练好的神经网络,将目标用户的属性数据映射到用户的潜在兴趣向量(predicted prhttp://www.chinaaet.com/article/3000073409
7.强化学习在线(Online): 智能体在与环境交互的过程中学习。 4. 强化学习的常用算法 Q-learning: 一种无模型、基于价值的算法,使用 Q 函数来估计状态-动作对的价值。 SARSA: 与 Q-learning 类似,但使用当前策略进行学习。 Deep Q-learning: 将 Q-learning 与深度神经网络结合,能够处理高维状态空间。 https://www.jianshu.com/p/d7e03db8d9aa
8.ICLR2022微软亚洲研究院深度学习领域最新研究成果一览在进入下一层前,研究员们会减去本层中产生的周期分量和回看分量,从而鼓励后续的神经网络层聚焦于尚未展开的周期性依赖。按照这样的模式堆叠 N 层就构成了实验涵盖了在线以及离线强化学习的不同情况,均验证了 VLOG 的良好表现。 此外,研究员们还开源了文中使用的麻将强化学习环境和对应的离线强化学习数据集,来https://www.msra.cn/zh-cn/news/features/iclr-2022
9.SLAM算法解析:抓住视觉SLAM难点,了解技术发展大趋势上一届国际计算机视觉大会ICCV,成为了深度学习技术的主场,但在我们宣布卷积神经网络的全面胜利之前,让我们先看看计算机视觉的,非学习几何方面的进展如何。同步定位与地图构建可以说是机器人学领域最重要的算法之一,在计算机视觉和机器人研究社区完成了一些开创性的工作。本文将总结来自 ICCV 实时 SLAM 的未来研讨会的要点https://auto.vogel.com.cn/c/2021-09-28/1135866.shtml