百度发布2024十大科技前沿发明,引领AI产业新变革

百度首席技术官(CTO)王海峰在发布会上表示,前沿发明不仅是百度提升自有产品和业务效能的关键,更为人工智能赋能各行各业提供了有力支持。他强调,百度发布十大发明旨在表彰引领产业创新的前沿成果,鼓励更多创新创造,并推动这些成果在产业界的广泛应用,加速产业化进程。

北京市知识产权局副局长潘新胜指出,近年来,国家高度重视人工智能产业发展,北京市正在大力推动人工智能创新策源地和产业高地建设。市知识产权局大力支持以百度公司为代表的产业知识产权龙头企业,在重点领域开展产业知识产权促进中心建设,以知识产权为纽带带动重点产业强链增效。作为人工智能领域领先企业,百度创新技术和知识产权工作已经走在了全国的前列。希望百度以此次发布会为契机,继续加强科技创新,以人工智能技术加快赋能产业高质量发展。

其中,基于生成式大模型的智能体技术尤为引人注目。该技术通过引入思考模型,使智能体具备了任务规划、工具调用、知识增强和反思进化等多重能力,能够低成本地支持不同应用场景下智能体的规模化建设与部署。这一技术的成功应用,显著提升了智能体的研发效率,降低了研发门槛,为AI产业的广泛应用提供了有力支持。

未来,百度将继续坚持压强式、马拉松式的研发投入,不断加强数智产业的快速发展,为经济高质量增长带来更多动能。同时,百度也将积极参与国际交流与合作,共同推动人工智能技术的创新与应用,为构建人类命运共同体贡献更多智慧和力量。

此次发布会的成功举办,不仅展示了百度在人工智能领域的最新科技成果和专利布局成绩,更为AI产业的未来发展注入了新的动力和活力。(文智)

百度2024十大科技前沿发明,具体如下:

一、基于生成式大模型的智能体技术

该发明技术创新性地引入了思考模型,使智能体具备了任务规划、工具调用、知识增强和反思进化等多重能力。通过系统化的设计与核心能力的定向优化,能够低成本地支持不同应用场景下智能体的规模化建设与部署;通过建设大规模仿真能力,加速智能体构建与分发。该技术系统已成功应用于文心智能体平台、商家智能体、文心快码等多个重点场景,显著提升了智能体的研发效率,降低了研发门槛。其中,商家智能体通过规划+专家的多模型协同技术和大规模仿真技术,提升反思、进化和使用工具的能力,构建AI营销能力;文心快码依托代码推荐和智能体系统,与传统DevOps工具链有机结合,推动人机协同结对编程的深度探索与落地。

二、基于大模型高效训练框架的多模型协同进化技术

该发明技术从工程和算法两个角度攻克系列难题。工程架构上,从混合并行策略、通信效率、计算存储优化全方位创新突破,显著提升大语言模型训练性能,支撑文心全系列模型全流程高效稳定训练。算法策略上,研发了大小模型协同的预训练技术,攻克了模型间知识难以继承的技术难题,改变了传统模型的训练范式,降低了新模型训练成本。基于该发明构建了各规模模型的技术壁垒,使文心大模型训练吞吐速度在过去一年提升了4.1倍,支持文心一言高效满足不同需求的广泛业务,赋能千行万业。

三、基于大模型和知识检索增强技术的多模态内容创编一体的智能系统

本发明技术综合运用知识增强、多源内容解析、融合式编辑、检索增强文生图等技术,解决了专业长文及多模态内容生成质量弱、创编无法共享容器、文生图主体准确性差等问题。检索增强文生图,旨在通过智能判断用户需求自适应处理参考图,进而基于混合模态的生图系统显著提升了生图主体的一致性,有效弥补长尾内容刻画不准确的短板,整体效果远远超过文生图原生系统。百度文库已经在基于用户指令及上传内容实时生成行业研报、演示文稿、思维导图、画本漫画并支持一站式编辑、跨模态转换、通用/个性化生图等复杂任务方面取得了显著的效果提升。2024年8月,极光旗下月狐数据发布报告显示,百度文库智能PPT市场份额已达八成,近3月用户规模复合增速达23%,增速远超行业水平。

四、支持规模化的自动驾驶定位和车道级地图生成技术

该发明技术突破了传统模式的效率和成本问题,降低了地图制图成本95%,车道级道路里程超过360万公里,实现全国超过41000个城乡镇道路的全覆盖。基于地图数据进一步构建的多模态传感器融合的自动驾驶高精定位技术,精度达到厘米级,极大提高了可量产性,将车端定位依赖的地图包体积降低97.5%,可靠性达到99.9999%,全面支撑目前萝卜快跑全无人驾驶的规模化运营,在高架桥下、多层路、隧道等各种复杂困难场景实现全无人驾驶。

五、面向大模型智能化的个性化记忆机制

六、基于大模型的超拟真数字人建模、驱动与生成系统

该发明技术提出了一整套的超拟真数字人建模、驱动和生成方案。针对真人数字人,研发了数据驱动的人像建模、跨模态驱动和人像视频生成大模型,实现了自然、拟真的数字人内容生产,独家支持大幅动作&遮挡场景的直播人像克隆,并实现了首个全身智能驱动直播间落地。针对超写实3D数字人,基于文心大模型研发了模态迁移和多智能体协作技术,实现了分钟级制作媲美影视大片、3A游戏的超写实数字人形象及运营内容。本发明技术已广泛地应用于数字人直播、视频生产、智能体等众多真人和3D数字人的产品中。

七、基于大模型的生成式商业检索系统

该发明技术变革了传统的“索引-召回-排序”流程,扁平化系统漏斗,减少信息损失,通过构建索引学习任务,将商业信息编码进模型参数,实现“模型即索引”,利用大模型的理解和推理能力,实现“生成即检索”,新范式显著提升系统定向效率120%。该发明所涉及项目业界率先落地,实现大规模工业化应用,生成式大模型结合商业搜索场景取得多项技术创新,创意丰富度提升37倍,创意质量提升92%,获得了显著的业务收益和广泛技术影响力。

八、大模型数据飞轮技术

九、大模型高效推理技术

该发明技术提出的高效推理技术,底层模型层基于飞桨框架,在推理架构方向,结合主流的PrefixCaching、Lookahead、PagedAttention、PD分离等方向持续创新,并将各项技术高效结合,大幅提升模型吞吐和性能。在大模型压缩方面,采用大模型无损量化技术,通过激活自适应分段平滑与权重联动重排等方法,在业内率先实现了对百亿千亿级大模型的高效无损压缩。该发明支持多种大模型压缩和推理加速手段,目前已应用于百度智能云千帆大模型平台等核心业务,减少模型推理的资源消耗,节省大模型部署成本超50%,提升模型性能,模型吞吐提升3-5倍。

十、用户数据反馈驱动的检索生成系统

该发明技术提出的检索生成系统,能够结合用户行为反馈信号,实现快速自我强化。通过满意度建模和强化学习直接对齐用户偏好,并利用用户反馈触发系统快速反思,解决了传统数据应用时专家反馈效率低和用户偏好建模难的问题。基于该框架的检索生成系统已覆盖18%的搜索流量,广泛应用于文字、视频、图片等搜索场景。多元用户反馈的规模大、可循环的特性,使系统能够快速适应数据、产品和环境的变化,帮助系统自动化寻优,加速系统向理想状态演进,具备极高的实用价值和市场竞争力。(文智)

THE END
1.大模型训练实战经验总结:从入门到精通,全方位解析模型训练中的关键步在当今AI技术飞速发展的背景下,定制化大模型的自主训练已成为满足特定行业需求、保障数据安全、提升模型应用效能的关键途径。本文将深度剖析这一过程的核心价值与实践智慧,从数据隐私保护、模型透明度增强,到数据预处理的精细操作,特别是数据配比在维持模型通用性与垂类能力平衡中的核心作用,为读者勾勒出一幅清晰的大模型https://blog.csdn.net/2401_85325726/article/details/144368261
2.Ai大模型训练框架随着人工智能技术的不断发展,越来越多的企业开始关注并投入巨资研发自己的AI大模型。然而,如何搭建一套高效、实用的AI大模型训练框架成为了摆在他们面前的一项难题。本文将为您详细解析AI大模型训练框架的构建方法,助您企业提升工作效率,创造更多价值。 一、明确目标,制定策略 https://marketplace.huaweicloud.com/article/1-05ec9e94d8885234cea15f6a38b71e11
3.如何从零构建一个现代深度学习框架?10907175的技术博客可以说,眼下比较火的就是各种基于深度学习的大模型训练,那么从零开始构建这样一个能够高效支持各类神经网络模型训练、推理及部署的现代深度学习框架,这个有一定的技术难度,非小白或者一般技术人员可以做到的。深度学习框架涉及到的基础理论知识以及各学科的联合能力要求都是比较高的,查阅了相关资料,下面来大致说一下如何https://blog.51cto.com/u_10917175/11835873
4.分布式训练框架分布式训练框架 一、主流框架: 1、SparkMLlib 2、Parameter Server 3、All-Reduce框架(TensorFlow) 二、分布式机器学习系统: 1、模型并行 2、数据并行 参考: [1]分布式机器学习初探 [2]分布式机器学习之—Spark MLlib并行训练原理 [3]一文读懂「Parameter Server」的分布式机器学习训练原理https://www.jianshu.com/p/920ac27dec12
5.25分钟训练机器人学会6个动作,伯克利开发高效机器人操纵框架而根据相关报告,未来十年,制造业将需要460万个岗位。许多制造商也都在转向自动化生产,机械自动化将占比越来越高。FERM这样的高效训练框架,可谓是制造业福音。 参考链接: https://venturebeat.com/2020/12/16/new-framework-can-train-a-robotic-arm-on-6-grasping-tasks-in-less-than-an-hour/ https://www.thepaper.cn/newsDetail_forward_10641430
6.制作训练集,到训练模型——手把手教你使用yolov5框架训练自己但我想告诉你,大量模型都是有被开源的,我们可以用别人做好的框架,训练自己的模型,而且根本不需要什么基础!我们只需要学会使用大佬们为我们做好的“工具”,就可以将其投入到开发项目中了。 那么接下来,我将会带大家通过开源的yolov5框架,完成:环境搭建,训练集制作,框架参数调整,训练模型和目标检测测试这几个步骤,来https://developer.horizon.ai/forumDetail/185446371330059463
7.科学网—[转载]群视角下的多智能体强化学习方法综述依靠分布式训练框架IMPALA,DeepMind在开发星际争霸AlphaStar时,采用了集中式训练分布式执行的范式设计了三大类智能体对象:主智能体(main agent)为正在训练的智能体及历史数据,采用优先级虚拟自对弈的方式来选取;联盟利用者(league exploiter)能打败联盟中的所有智能体,按照有优先级虚拟自对弈的方式与全联盟的对手进行训练;https://blog.sciencenet.cn/home.php?mod=space&uid=3472670&do=blog&id=1422698
8.JMedSeg:Jittor医学图像智能分割模型库开源了!—Jittor在此基础上,JMedSeg研发团队对现有的方法进行取长补短,提出了基于 MoCo 对比学习框架的自监督预训练框架、数据增强方法,以及STN 空间变形网络结合的SAS(Self supervise learning & dataAugmentation &Spatial transformer networks) 医学图像分割模型训练框架。 https://cg.cs.tsinghua.edu.cn/jittor/news/2021-08-19-00-00-JMedSeg/
9.腾讯云总监手把手教你,如何成为AI工程师?这类人主要提供将计算逻辑,硬件封装打包起来,方便模型的训练和预测。比如: 精通Caffee/TensorFlow等训练框架源码,能熟练使用并做针对性优化; 构建机器学习平台,降低使用门槛,通过页面操作提供样本和模型就能启动训练; 通过FPGA实行硬件加速,实现更低延时和成本的模型预测; https://cloud.tencent.com/developer/article/1004751
10.堆栈AIInfra——AI大模型时代的“卖铲人”? 模型训练:模型库更加刚需,训练框架持续迭代,软件工具协助实验管理。基于通用的LLM大模型微调、蒸馏出小模型成为高性价比的落地方式,因此需要能够高效便捷地获取预训练模型的模型库;也催生更适应LLM大规模训练需求的底层分布式计算引擎和训练框架。此外,我们认为实验管理工具的重要性或始终较高。 https://wallstreetcn.com/articles/3695292
11.一种基于三方同态加密纵向联邦学习的模型保护方法21.图3是本发明带有vfl server服务端的三方模型训练框架图; 具体实施方式 22.为使本发明的目的、技术方案和有益效果更加清晰,下面结合附图及具体实施例对本发明作进一步的详细描述。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。 http://mip.xjishu.com/zhuanli/55/202210359699.html
12.飞桨』核心框架,深度学习&机器学习高性能单机分布式训练PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署) - PaddlePaddle/Paddlehttps://github.com/PaddlePaddle/Paddle
13.旷视开源深度学习框架天元!动静合一,训推一体,落地边缘设备传统的训练框架和推理框架是分开进行的,也就是说,系统要先经过训练再接受新的格式,在推理框架上适配不同的场景,但是在两者转化过程中会遇到算子无法支持、手工无法优化、大量冗余算子等多种问题。 天元系统的训练和推理是一体的,因此无需进行模型转换,同时,系统内部内置有模型优化,可以有效降低手工优化的误差,精度和速https://news.hexun.com/2020-03-25/200756446.html
14.守护记忆:多模态大模型为认知障碍患者带来全新的训练方法近期,微软亚洲研究院与上海市精神卫生中心展开联合研究,借助微软 Azure OpenAI 服务中的多模态大模型以及智能代理(AI agent)技术,开发了个性化认知训练框架“忆我”(ReMe),扩展了自动化认知训练的训练范围,为数字化认知训练提供了新方法,有望帮助延缓认知下降。这项创新工具将助力推进认知训练研究,为各类认知障碍,包括https://www.msra.cn/zh-cn/news/features/reme
15.ACL2021美团提出基于对比学习的文本表示模型,效果相比BERT他们同样使用基于对比学习的训练框架,使用Dropout的数据增强方法,在维基百科语料上Fine-tune BERT。 2.2 对比学习 对比学习是CV领域从2019年末开始兴起的预训练方法,同时最近也被广泛应用到了NLP任务中,我们简要介绍两个领域下的进展: 计算机视觉(CV)领域的对比学习:2019年年末~2020年年初,Facebook提出MoCo$^\text{[https://maimai.cn/article/detail?fid=1631291182&efid=zbjLjwE_JcF3pqFvOvLMNw
16.从「大炼模型」到「炼大模型」:1.75万亿参数,全球最大预训练模型如今,「悟道 2.0」更进一步:不仅在预训练模型架构、微调算法、高效预训练框架方面均实现了原始理论创新,在世界公认的多个 AI Benchmark 榜单上,该模型还取得了多项任务能力的领先地位。 「悟道 2.0」的算法基石是「FastMoE」。在攻关过程中,「悟道」团队开创了 FastMoE 技术,打破了 MoE 本身所存在的限制。作为首个https://www.jiqizhixin.com/articles/2021-06-01-6