自然语言强化学习:一个可处理语言反馈的强化学习框架数学推理

在人工智能发展史上,强化学习(RL)凭借其严谨的数学框架解决了众多复杂的决策问题,从围棋、国际象棋到机器人控制等领域都取得了突破性进展。然而,随着应用场景日益复杂,传统强化学习过度依赖单一数值奖励的局限性日益凸显。在现实世界中,反馈信号往往是多维度、多模态的,例如教练的口头指导、视觉示范,或是详细的文字说明。近日,来自伦敦大学学院、上海交通大学、布朗大学、新加坡国立大学和布里斯托大学的联合研究团队提出了全新的自然语言强化学习(NaturalLanguageReinforcementLearning,NLRL)范式,成功将强化学习的核心概念类比为基于自然语言的形式,开辟了一条通向更智能、更自然的AI决策学习的新道路。

关键词:人工智能,强化学习,自然语言强化学习

从数值到语言:新范式的萌芽

这种困境促使研究团队开始探索一个更具突破性的方向:能否设计一个框架,让AI系统完全通过与环境的交互来学习,而不依赖任何人类标注数据?传统强化学习为这个问题提供了灵感,但其单一数值奖励的机制难以满足复杂场景的需求。团队意识到需要一个新范式,既要继承强化学习的数学严谨性,又要具备自然语言的表达丰富性。这个思路最终导向了NLRL的诞生。

自然语言强化学习

传统强化学习虽然在数学上严谨优雅,但其单一数值反馈机制与人类学习方式存在巨大差距。研究团队从象棋教练指导学生的场景获得启发:教练不会简单说“这步棋的价值是0.7”,而是会详细解释“这个走法控制了中心,限制了对手的机动性,同时为王翼进攻创造了条件”。这种观察促使团队思考:能否将丰富的语言反馈信号整合进学习框架?

这个思路的关键突破来自对传统强化学习本质的重新思考:既然传统RL可以通过蒙特卡洛和时序差分等方法进行学习,这些方法是否可以扩展到语言空间?基于这一洞察,团队提出了NLRL框架,将传统RL中的数学概念类比为语言形式。以下是一个对应关系示意图。

具体而言,NLRL引入“语言任务指令”(T_L)替代抽象的奖励函数,并设计了度量函数F来评估轨迹描述D_L(τ_π)与任务指令的完成度。

语言化的决策框架

在NLRL中,MDP的每个组成部分都被重新定义为文本形式。状态变为包含完整上下文的自然语言描述,动作空间转化为带有推理过程的语言决策,而环境反馈则扩展为包含原因分析的详细评估。例如,在迷宫环境中的状态描述会包含位置、周围环境、历史探索等完整信息。

语言策略与推理

NLRL中的策略π_L被创新性地分解为两个部分:π_L(a,c|s)=π_L(c|s)π_L(a|c,s),其中c代表思维过程。这种分解使得决策过程变得完全透明。以国际象棋为例,系统会先分析局势(“白方控制中心点,黑方王翼薄弱”),提出计划(“开展王翼进攻,同时固守中心”),最后给出具体建议(“Nf3-e5,威胁f7并加强中心控制”)。

语言价值评估

NLRL将传统的标量值函数V(s)和Q(s,a)扩展为语言价值函数V^L_π和Q^L_π。这种扩展使得评估变得更加丰富和可解释。评估结果不仅包含胜率,还涵盖空间利用、子力配合等多个角度的分析,并提供具体的改进建议。

从理论到实践

基于这一洞察,研究团队提出了三个关键技术创新,构建了完整的NLRL实现框架:

语言蒙特卡洛估计

在传统强化学习中,蒙特卡洛方法通过采样多条轨迹并取平均值来估计状态价值。但在语言空间中,我们无法直接对文本描述进行算术平均。研究团队利用大语言模型作为信息聚合器(aggregator)。

具体来说,当系统需要评估某个状态时,它会:

1.从该状态开始采样K条完整轨迹

2.将每条轨迹转化为详细的文本描述

3.使用专门设计的提示让LLM扮演“专家评估员”的角色

4.LLM分析所有轨迹描述,提取关键模式和见解

5.生成一个综合性的评估报告

例如,在国际象棋中,系统可能会分析说:“基于观察到的20个可能发展,此位置对白方有利。在80%的变化中,白方能够通过控制中心格和针对f7的战术威胁获得优势。但需要注意的是,如果黑方成功完成王翼城堡,局势可能趋于平衡。”

语言时序差分学习

传统的时序差分学习基于贝尔曼方程,将长期价值分解为即时奖励和未来状态的折扣价值。NLRL创新性地提出了语言贝尔曼方程,将这种时序关系扩展到语言空间。

在NLRL中,语言时序差分学习包含三个关键组件:

1.文本描述生成器d:将状态转换(s,a,r,s')转化为自然语言描述

3.语言组合函数G2:将即时反馈与未来评估结合

这三个组件协同工作的方式如下:

在实践中,这种方法表现出了独特的优势:

语言策略提升

这种提升机制的工作原理是:

1.对当前状态收集多个候选动作

2.获取每个动作的语言价值评估

4.生成改进的决策链路,包括:

例如,在迷宫导航任务中,系统可能会这样分析:“向右移动是最优选择,因为:1)根据之前的探索经验,右侧路径更可能通向目标2)即使这条路不是最短路径,也为我们保留了回退的选项3)相比向上移动可能遇到的死胡同,这个选择风险更小。”

实验验证

研究团队在三个具有代表性的环境中系统地验证了NLRL的效果。这些实验不仅展示了NLRL的性能优势,更重要的是证明了该框架在不同类型任务中的普适性和可扩展性。

迷宫导航-基于prompt的自然语言策略迭代

在复杂的迷宫导航任务中,研究团队测试了纯基于prompt的自然语言策略迭代算法。研究团队选择了两种具有挑战性的迷宫环境进行测试:双T型迷宫和中等复杂度迷宫。在这些环境中,智能体需要从随机初始位置导航到目标位置,同时避免撞墙。通过语言TD估计,在双T型迷宫中实现了-11.19±2.86的平均奖励,远优于基线方法的-27.29±4.43。但NLRL真正的优势不仅仅体现在数字上。系统能够清晰地解释每个决策的原因,例如:“选择向南移动,因为:1)北边是死胡同,我们之前已经探索过2)南向路径似乎更接近目标位置3)即使这条路不是最优解,我们仍保留了向东撤退的选项。”实验还发现,增加变化数量和前瞻步数能进一步提升性能。

突破棋(Breakthrough)-自然语言价值函数

在5x5突破棋(状态空间达108)这个几乎没有人类数据的任务中,NLRL纯依靠环境反馈训练出了高质量的语言评估器。通过混合不同水平的MCTS策略数据构建训练集,评估器达到了0.85的准确率,显著超越LLAMA-3.1-70b的0.61以及GPT-4o的0.58。更重要的是,这个评估器能提供专业级别的局势分析。例如:“黑方略占优势,原因有三:1)在d4和e4形成了稳固的双兵链2)白方右翼的兵形成了薄弱点3)黑方的推进速度比白方快半步。建议白方通过c3-c4来争夺中心控制权。”

井字棋-自然语言Actor-Critic

在井字棋环境中,团队实现了完整的语言Actor-Critic系统。通过动作选择掩码防止幻觉、经验缓冲区解决遗忘问题、持续的迭代优化等创新,系统在随机对手下实现90%以上胜率,面对确定性策略甚至能保持100%的胜率,同时保持决策过程的清晰可解释性。

本论文由伦敦大学学院、上海交通大学、布朗大学、布里斯托大学、新加坡国立大学以及萨里大学的研究者合作完成。冯熙栋是论文第一作者,即将毕业于伦敦大学学院。目前是GoogleDeepMind的ResearchScientist,主要研究方向包括强化学习与生成模型。刘博是本推文作者,新加坡国立大学二年级博士生,研究强化学习、推理及机器学习系统在复杂现实环境中的应用。

THE END
1.强化学习ReinforcementLearning在航空航天领域的应用与挑战强化学习,Reinforcement Learning,航空航天,应用,挑战,控制,优化,决策 1. 背景介绍 航空航天领域一直以来都是科技发展的前沿阵地,其复杂性、安全性要求极高,对智能控制和决策的需求日益迫切。传统控制方法往往依赖于预先设定的规则和模型,难以应对复杂、动态变化的环境。而强化学习(Reinforcement Learning,RL)作为一种机器https://blog.csdn.net/2301_76268839/article/details/144429525
2.自然语言强化学习:一个可处理语言反馈的强化学习框架这种困境促使研究团队开始探索一个更具突破性的方向:能否设计一个框架,让 AI 系统完全通过与环境的交互来学习,而不依赖任何人类标注数据?传统强化学习为这个问题提供了灵感,但其单一数值奖励的机制难以满足复杂场景的需求。团队意识到需要一个新范式,既要继承强化学习的数学严谨性,又要具备自然语言的表达丰富性。这个https://hub.baai.ac.cn/view/41851
3.大数据上云存算分离演进思考与实践大数据阿里技术异构计算的资源负载混部:在统一存储平台提供面向异构计算的工作资源负载下的多维度查询分析服务。在线与离线计算共用计算和存储资源。解决资源波峰波谷问题,实现资源动态削峰填谷 存储降本: 存储利用率+冷热分层。支持基于分布式存储系统上的多层存储(热存储/标准存储/冷存储等)。举例来说,存储降本优化主要依赖于归档与冷https://xie.infoq.cn/article/de0971c840628b7b467a110dc
4.Volcano:在离线作业混部管理平台,实现智能资源管理和作业调度节点可观测性增强,对在离线任务资源布局动态优化,识别在线业务是否受到干扰,对干扰进行定位和控制。 集群可观测性增强,对集群任务布局动态优化,减少集群资源使用不均衡问题。 基于Volcano混合部署解决方案如下图所示: 图3 基于Volcano混合部署架构 Volcano混部调度能力 https://developer.huawei.com/consumer/cn/forum/topic/0202841185168780412
5.云计算:ChatGPT的“中枢神经”云原生离混部技术实现离散训练,在线微调 ChatGPT基于大量优质的数据语料训练,实现对话意图识别和内容生成能力的突破,这主要由于ChatGPT具有强大的智能算法学习和记忆调用基础,通过云原生离线混部和极致弹性调用机制,离线训练千亿级别的超大规模参数,形成了ChatGPT的存储记忆资源池,通过在线补充完成人类反馈强化学习(RLHF)的微调https://m.thepaper.cn/newsDetail_forward_22342649
6.在离线混部云容器引擎最佳实践调度在离线混部的核心目标是通过将在线应用和离线应用混合部署到同一个集群中,最大程度地提高集群的资源利用率,进而降低企业的运营成本。值得注意的是,在线应用和离线应用这两种不通类型的应用对服务质量的要求是不一样,在线应用往往是延时高度敏感,对资源质量要求也更高。而离线应用则对延迟要求相对宽松,有更好的重试容错https://www.ctyun.cn/document/10083472/10172926
7.阿里决战双11核心技术揭秘——混部调度助力云化战略再次突破在大家如丝般顺滑地完成一次次秒杀、抢购和付款过程的背后,是阿里巴巴技术团队经历数年时间的系统打磨,技术架构优化所做出的努力。而底层基础设施服务质量不断提升、IT 成本增加逐年递减的演进历程,都由一个名为「云化战略」的技术梦想所贯穿起来。 特别是 2017 年双 11,阿里巴巴首次混合部署了在线服务、离线计算以及https://www.leiphone.com/category/ai/HHa8Y9tPeVgB1Kt8.html
8.Kubernetes资源拓扑感知调度优化腾讯云开发者社区基于离线虚拟机的混部方案导致的节点实际可用 CPU 核心数变化 面对运行在线业务的云主机平均利用率较低的现实,为充分利用空闲资源,可将离线虚拟机和在线虚拟机混合部署,解决公司离线计算需求,提升自研上云资源平均利用率。在保证离线不干扰在线业务的情况下,腾讯星辰算力基于自研内核调度器 VMF 的支持,可以将一台机器上https://cloud.tencent.com/developer/article/2029446
9.浪潮云海首席科学家张东:面向一云多芯的系统设计云海云操作系统(InCloud OS)、Apsara Stack、EasyStack等通过单一资源池实现异构资源的统一调度和互联互通,但当前阶段主要解决“多芯”的混部问题,距离以应用为中心的跨架构运行和低成本切换尚有较大差距。为满足多芯共存条件下业务的稳定运行、平滑切换和弹性伸缩,如下科学问题和技术难题亟待解决。 https://www.cet.com.cn/itpd/itxw/3465583.shtml
10.便宜云服务器容器服务在AI智算嘲的创新与实践容器服务也在积极推动上游开源社区,在Kubernetes体系下,定义支持各类计算框架和任务类型的云原生任务标准API和生命周期。帮助用户可以在Kubernetes集群上以统一的标准和接口,管理调度各类数据计算类工作负载。 ACK扩展了Kube-scheduler framework,与Slurm调度系统打通,即支持节点池维度的分节点调度,也支持共享节点资源的混部调度http://zhanzhang.ceden.cn/?article/1644909
11.腾讯云专有云TCS容器平台企业级云容器平台云原生容器腾讯云专有云TCS容器平台,适配丰富异构IAAS设备,满足利旧需求,广泛适配兼容信创CPU/指令集/操作系统。自研高性能负载均衡;基于eBPF的高性能网络;跨集群统一服务发现;高性能Ingress;平台高可用和部署方案,运维运营能力。 立即咨询 传统企业信息化体系存在的问题 https://www.yun88.com/product/3926.html
12.华为云UCS华为云与本地IDC协同,实现弹性上云 构筑本地集群极速弹性上云,流量高峰,业务云上秒级扩容 结合Volcano以及HCE OS 2.0能力,构建本地集群在线、离线混部能力,资源利用率提升40% 在AI训练和AI推理场景下,通过GPU虚拟化技术实现GPU隔离以及资源利用率提升 云原生应用全景观测,大幅提升运维效率 https://www.huaweicloud.com/product/ucs.html
13.阿里云异构计算类云服务器介绍(GPU云服务器FPGA云服务器等神龙AI加速引擎AIACC是基于阿里云IaaS资源推出的AI加速引擎,用于优化基于AI主流计算框架搭建的模型,能显著提升深度学习场景下的训练和推理性能。配合集群极速部署工具FastGPU快速构建AI计算任务,全面提升研发效率和GPU利用率,缩短计算时间并降低AI的推理延迟。 2、神龙AI加速引擎AIACC产品优势 https://www.jianshu.com/p/d4c370053533
14.深入硬件层内核态与用户态,一文看懂火山引擎云原生操作系统近日,在2020全球分布式云大会上,火山引擎解决方案总监于鸿磊以“多云环境下的云原生操作系统”为主题,从云原生操作系统出发,分享了火山引擎敏捷高效的基础设施与技术,为企业追求业务持续增长的提供了一种创新技术思路。 激发创造,释放潜能 字节跳动具有长期沉淀、服务于数亿用户的大数据技术、人工智能等基础技术服务能力,拥https://www.volcengine.com/docs/6316/66821
15.小红书近线服务统一调度平台建设实践对于服务,我们目前将服务划分为强隔离要求在线服务、普通在线服务、近线服务、离线服务4个QoS级别。 服务QoS 资源保障模型,本质上就是按照服务的 QoS 级别,给予不同的算力保障。 对于近线服务,调度优先级为:独占资源池机器 > 在线集群闲置算力 > 混部算力 > 公有云容器实例服务。目前公有云容器实例服务,只是作为一https://blog.itpub.net/70016482/viewspace-2927565/
16.成立3年,云服务厂商火山引擎全景扫描该服务属于实时计算方面,完全基于云原生构建:脱胎于抖音内部超大规模实践,日常峰值 QPS 达100亿,稳定性提升51%;通过Serverless,实现弹性扩缩容和在离线业务混部,资源利用率提升40%;并且能够统一调度,满足流批一体等多种计算模态。通过LAS和Serverless Flink,企业可以更加高效、经济的建设自身的数据底座。https://www.eefocus.com/article/1512934.html