在设计这类数据产品时,设计师需要考虑各种情况,不光要考虑产品对人有用的情况,同时也要考虑到那些令人失望、尴尬、烦恼或停止工作等情况。“离线体验(offboardingexperience)”的设计可能与“在线体验(onboardingexperience)”一样重要。例如,据称有三分之一的Fitbit用户在6个月内停止佩戴该设备。这些数百万个被遗弃的设备会发生什么?它们生成的个人的数据会发生什么变化?有什么机会在不同的用户体验中使用它们?
有一种新的方式可以解决在数字与产品分离之后的出现的问题。数字服务工作在日益庞大的生态系统上,但用户数据往往呈现中心化的趋势。试想一下云信用的概念,它允许人们使用基于与另一种服务之间的关系的来使用其它服务。(注:芝麻信用的模式)
展望不久的将来,自然语言处理、知识表达、语音识别和自然语言生成方面的最新突破可以与机器建立更微妙和更强的关系。在几次迭代中,亚马逊的Echo可能会变得更加智能。人类学家GenevieveBell预言了一种潜在演变:在AI的下一个浪潮中,人机交互到人机关系的转变是根植于人类文化和历史之中的:
“目前的人机交互框架并不是关于推荐系统的(目前大多数AI产品是这样做),但从根本上来说,其实是关于教育和关怀。如果现在的产品能够向这两个方向靠拢,那么我们就会处在一个从讨论人机交互转向人机关系的非常有趣的时刻。”
——GenevieveBell
我们会发现算法已经逐渐融入到我们的日常生活中,数据为不断演变的关系提供了支撑。这种演变需要设计师和数学家之间密切合作。
02
设计师和数据学家之间的合作关系
通过目前的工作经验来展望数据和算法的用户体验,我发现它跟目前以人为中心的设计的做法是不同的。在D&A,数据学家的角色已经从反应模型和A/B测试开发人员提升为积极的合作伙伴,他们会思考工作的意义。我们的数据科学团队已经变成了直接与工程师、设计师和产品经理合作的团队。
03
当设计符合科学
在D&A工作的头几周里,我发现设计师和数据学家经常陷入僵持的交流中,这种交流通常听起来像这样:
设计师:你好!你的数据和算法可以告诉我什么?
数据学家:呃...你想知道什么?
产生这种情况的主要问题是缺乏对彼此的实践和目标的共同理解。例如,设计师将情境转化为一种体验形式。数据学家将数据和模型的内容转化为知识。设计师经常采用可以适应不断变化的环境和评估方式的设计路径。数据学家则倾向于采用类似于中心设计的方式,这种方式机械性更强但是灵活性更差。他们会严格遵循科学方法,认为这个方法是一个不断改良的循环过程。
一个恰当的研究问题有助于定义在原型阶段产生的假设和模型类型。这些模型是在产品得以上线生产之前建立起来的评估算法,我们称之为“dataengine-数据引擎”。每当“数据引擎”所支持的体验没有达到预期的效果时,就需要经历一个重新构建问题、继续不断细化的循环过程。
数据科学方法及其持续评价和细化的循环过程
04
接触点
1、共同创造包含优先事项、目标和范围的体验及解决方案的切实可行的构想
通过定量调查、桌面研究和实地调研的洞察评估任何假设;
2、从愿景和研究中阐明关键问题。这些问题可以是:团队是否提出正确的问题;算法是否可以提供可操作的解决方案
3、了解给出解决方案的数据模型的所有局限性;
4、指定一个理想体验的成功指标,并在测试发布之前对其进行验证评估。验证阶段作为项目的完成点,并且必须将其定义为项目目标的一部分(例如,将建议召回率提高5%,检测到85%的将要违约的客户);
“以人为本的设计已经从对象设计(工业设计)扩展到体验设计(增强交互设计,视觉设计和空间设计),下一步将是系统行为设计:决定自动化或智能系统行为的算法的设计“
——HarryWest
05
愿景驱动的协作关系
到目前为止,我认为“生活体验”是数据科学与设计的交汇点。对于设计师和数据学家来说,不可缺少的第一步是建立一个切实的愿景和结果(如体验、解决方案、优先事项、目标、范围和可行性意识)。Airbnb的产品总监JonathanGolden称这是一种以愿景驱动的产品管理方法:
“公司的愿景就是你想要这个世界看起来像五年后的样子。团队协作将帮助公司实现这个目标。“
——JonathanGolden
然而,这个概念化阶段要求的愿景呈现不仅仅是在董事会议上播放一个完美的ppt。因此,我的方法是聘请设计/科学合作伙伴来设计。它与亚马逊的CTO——WernerVogels所描述的“WorkingBackwards”相似:
——WernerVogels
通过与设计故事相结合的思考,创造一种具有潜在未来的技术来述说现在。由FuturesCones和MattJones开发的图表:《跳到最后——实用设计说明》
“设计故事充当了讨论和评估变革的依据,这种变化可能会改变人们所期望的愿景和必要的计划。”
在D&A,这意味着我通过为数据学家和设计师的研究创建一个切实可行的愿景来将他们紧密团结起来。首先,我们列出正在进行的调研问题。
06
设计特点
“广泛应用AI首先需要理解如何构建用户界面,从而将这些系统的强大功能交付给用户。”
——GregBorenstein
这种系统行为设计代表了以人为中心设计变革的未来。到目前为止,我在机器学习时代创造有意义的体验的过程中,发现其具有以下特征:
反馈:数据是行为学习系统的用户体验的生命线。通过精心设计的反馈循环机制,确保系统得到适当的数据补充。
Seamfulness(有缝性):考虑将算法的能力和缺陷作为体验的一部分。例如,预测与通知不同,设计者必须考虑预测中的不确定性将如何支撑用户行为。