蚂蚁金服核心技术:百亿特征实时推荐算法揭秘干货技术博文

在线学习(Onlinelearning)由于能捕捉用户的动态行为,实现模型快速自适应,进而成为提升推荐系统性能的重要工具。然而它对链路和模型的稳定性,训练系统的性能都提出了很高的要求。但在基于原生TensorFlow,设计Online推荐算法时,我们发现三个核心问题:

一些资讯推荐场景,需要大量长尾词汇作为特征,需使用featuremap对低频特征频次截断并连续性编码,但耗时且方法aggressive。

使用流式数据后,无法预知特征规模,而是随训练逐渐增长。因此需预留特征空间训练几天后重启,否则会越界。

模型稀疏性不佳,体积达到数十GB,导致上传和线上加载耗时长且不稳定。

更重要的是,在线学习如火如荼,当流式特征和数据都被打通后,能按需增删特征,实现参数弹性伸缩的新一代训练平台成为大势所趋。为了解决这些问题,从2017年底至今,蚂蚁金服人工智能部的同学,充分考虑蚂蚁的业务场景和链路,对TensorFlow进行了弹性改造,解决了以上三大痛点,简化并加速离线和在线学习任务。其核心能力如下:

弹性特征伸缩体系,支持百亿参数训练。

group_lasso优化器和频次过滤,提高模型稀疏性,明显提升线上效果。

模型体积压缩90%,完善的特征管理和模型稳定性监控。

在与业务线团队的共同努力下,目前已在支付宝首页的多个推荐场景全流量上线。其中某推荐位的个性化onlinelearning桶最近一周相比线上多模型融合最优桶提升4.23%,相比随机对照提升达34.67%。某个性化资讯推荐业务最近一周,相比DNN基准uv-ctr提升+0.77%,pv-ctr提升+4.78%,模型体积压缩90%,链路效率提升50%。

1)需要预先计算特征到维度范围内的int值的映射表,这一步操作通常在ODPS上完成。因为需要扫描所有出现的特征并编号,计算非常缓慢;

2)在onlinelearning场景下,为了容纳新出现的特征,需要预留一部分维度空间,并在线上不断修改映射表,超过预留空间则需要重新启动在线任务。

为了突破固定维度限制,实现特征的动态增加和删除,最朴素的优化想法是在TensorFlow底层实现模拟字典行为的Variable,并在此基础上重新实现Tensorflow上层API。由此我们进行了优化,在server新增了基于HashMap的HashVariable,其内存结构如下:

每个特征都通过hash函数映射到一个2的64次方大小的空间内。当需要计算该特征时,PS会按需惰性创建并返回之。但其上层行为与原生TF一致。由于去掉了featuremap转ID的过程,我们内部形象地将其称为“去ID化”。在此之上我们实现了GroupLassoFTRL,频次过滤和模型压缩等一系列算法。

备注:弹性特征带来一个显著的优势:只要用足够强的L1稀疏性约束,在单机上就能调试任意大规模的特征训练,带来很多方便。我们的hashmap实现是KV化的,key是特征,value是vector的首地址。

离线训练优化

经过这样的改造后,在离线批量学习上,带来了以下变化:

在线训练优化

onlinelearning上,能带来如下变化:

除了性能有明显的提升之外,其最大的优势是不需提前申请空间,训练可以无缝稳定运行。

弹性架构,主要目的就是特征优选,让模型自适应地选择最优特征,进而实现稀疏化,降低过拟合。本节介绍特征优选的两个核心技术:

使用流式频次过滤,对特征进入进行判定。

使用GroupLasso优化器,对特征进行筛选和删除。

2.1GroupLasso优化器

稀疏化是算法追求的重要模型特性,从简单的L1正则化和TruncatedGradient[9],再到讨论累积梯度平均值的RDA(RegularizedDualAveraging)[10],再到目前常见的FTRL[2]。然而它们都是针对广义线性模型优化问题提出的稀疏性优化算法,没有针对sparseDNN中的特征embedding层做特殊处理。把embedding参数向量当做普通参数进行稀疏化,并不能达到在线性模型中能达到的特征选择效果,进而无法有效地进行模型压缩。

例如:当包含新特征的样本进入时,一个特征对应的一组参数(如embeddingsize为7,则参数数量为7)被激活,FTRL判定特征中的部分参数无效时,也不能安全地将该特征删除。如图:

因此,在L1和L2正则的基础上,人们引入L21正则(grouplasso)和L2正则(exclusivesparsity),分别表示如下:

L21早在2011年已经引入,它最初目的是解决一组高度关联特征(如男女)应同时被保留或删除的问题,我们创新地扩展到embedding的表示上,以解决类似的问题。

在L21中,由于内层L2正则将一个特征的所有参数施加相同的约束,能将整组参数清除或保留,由此决定embedding层中的某些特征对应的embedding向量是否完全删除,提升模型泛化性。因此称为grouplasso。

而L12则正好相反,它迫使每组参数中的非0参数数量一致但值又尽可能不同,但使输出神经元互相竞争输入神经元,进而使特征对目标更具区分性。

对于DNN分类网络,底层表示要求有足够的泛化性和特征抽象能力,上层接近softmax层,需要更好的区分性。因此我们通常在最底层的embedding层使用grouplasso。即如下的优化目标:

直接将L21正则项惩罚加入loss,模型最终也能收敛,但并不能保证稀疏性。因此Grouplasso优化器参考了FTRL,将梯度迭代分成两个半步,前半步按梯度下降,后半步微调实现稀疏性。通过调节L1正则项(即公式中的λ),能有效地控制模型稀疏性。

Grouplasso是弹性计算改造后,模型性能提升和压缩的关键。值得指出:

在我们实现的优化器中,Variable,以及accum和linear两个slot也是KV存储。

L12和L21正则相结合的方法也已经有论文讨论[8],但我们还未在业务上尝试出效果。

由于篇幅限制,本节不打算详细介绍Grouplasso的原理和推导

2.2流式频次过滤

讨论完特征动态删除的方法后,我们再分析特征的准入策略。

2.2.1频次过滤的必要性

在RDA的优化公式中,满足以下条件的特征会被置0:

若在t步之前,该特征只出现过几次,未出现的step的梯度为0,随着步数增大,满足上述条件变得越来越容易。由此RDA是可以直观处理极稀疏特征的。但对于FTRL,要满足:

其中,

不仅和历史梯度有关,还与历史学习率和权重w有关。因此FTRL虽然也能处理极稀疏特征,但并没有RDA那么aggressive(此处还待详细地分析其下界,GroupFTRL与此类似)。

由于FTRL在设计和推导时并未明确考虑极低频特征,虽然通过增大λ,确实能去除大量极低频特征,但由于约束太强,导致部分有效特征也被lasso,在离线实验中被证明严重影响性能。其次,对这些巨量极低频特征,保存历史信息的工程代价是很高昂的(增加几倍的参数空间和存储需求),如下图:

因此我们提出,能否在实时数据流上模拟离线频次过滤,为特征提供准入门槛,在不降低模型性能的基础上,尽量去除极低频特征,进一步实现稀疏化?

2.2.2频次过滤的几种实现

注意:由于默认的embedding_lookup_sparse对特征执行了unique操作(特征归一化以简化计算),因此在PS端是不可能获取真实特征和label频次的。需要Python端对placeholder统计后,上传给server端指定的Variable,优化器通过slot获得该Variable后作出联合决策。

最naive的思路是模拟离线频次过滤,对特征进行计数,只有达到一定阈值后再进入训练,但这样破坏了数据完整性:如总频次6,而阈值过滤为5,则该特征出现的前5次都被忽略了。为此我们提出了两种优化方案:

基于泊松分布的特征频次估计

在离线shuffle后的特征满足均匀分布,但对在线数据流,特征进入训练系统可看做泊松过程,符合泊松分布:

。根据泊松分布,我们可以算出剩余

次的概率

。每次该特征出现时,都可按该概率

做伯努利采样,特征在t步进入系统的概率用下式计算:

通过真实线上数据仿真,它能接近离线频次过滤的效果,其λ是随每次特征进入时动态计算的。它的缺陷是:

当t越小时,事件发生在t内的次数的variance越大,所以会以一定概率误加或丢弃特征。

未来总的训练步数T在在线学习中是未知的。

频次过滤与优化器相分离,导致不能获得优化器的统计信息。

动态调L1正则方案

在经典的FTRL实现中,L1正则对每个特征都是一致的。这导致了2.2.1中提到的问题:过大的L1虽然过滤了极低频特征,但也影响的了模型的性能。参考各类优化器(如Adam)对learning_rate的改进,我们提出:通过特征频次影响L1正则系数,使得不同频次的特征有不同的lasso效果。

其中c是惩罚倍数,

为特征最低门限,这两者皆为超参,

是当前特征出现的频次。

我们在线上环境,使用了动态调节L1正则的方案。在uvctr不降甚至有些微提升的基础上,模型特征数比不使用频次过滤减少75%,进而从实验证明了频次过滤对稀疏化的正向性。它的缺点也很明显:特征频次和正则系数之间的映射关系缺少严谨证明。

3.1模型压缩

在工程上,由于做了优化,如特征被优化器lasso后,只将其置0,并不会真正删除;在足够多步数后才删除。同时引入内存池,避免特征的反复创建和删除带来的不必要的性能损失。这就导致在训练结束后,模型依然存在大量0向量。导出时要进一步做模型压缩。

由于引入了HashPull和HashPush等非TF原生算子,需要将其裁剪后转换为原生TF的op。我们将这些步骤统称图裁剪(GraphCut),它使得线上inference引擎,不需要做任何改动即可兼容弹性改造。由于有效特征大大减少,打分速度相比原引擎提升50%以上。

我们将图裁剪看做TF-graph的静态优化问题,分为3个步骤:

第一遍遍历Graph,搜索可优化子结构和不兼容的op。

第二遍遍历,记录节点上下游和元数据,裁剪关键op,并将Variable的非0值转存至Tensorflow原生的MutableDenseHashTable。本步骤将模型体积压缩90%。

拼接新建节点,重建依赖关系,最后递归回溯上游节点,去除与inference无关的子图结构

我们实现了完整简洁的图裁剪工具,在模型热导出时调用,将模型从原先的8GB左右压缩到几百兆大小,同时保证模型打分一致。

3.2模型稳定性和监控

onlinelearning的稳定性非常重要。我们将线上真实效果,与实时模型生成的效果,进行了严密的监控,一旦样本偏差过多,就会触发报警。

由于需捕捉时变的数据变化,因而不能用固定的离线数据集评估模型结果。我们使用阿里流式日志系统sls最新流入的数据作为评估样本,以滑动窗口先打分后再训练,既维持了不间断的训练,不浪费数据,同时尽可能高频地得到最新模型效果。

我们对如下核心指标做了监控:

样本监控:正负比例,线上打分值和online-auc(即线上模型打分得到的auc),产出速率,消费速率。

训练级监控:AUC,User-AUC(参考备注),loss,模型打分均值(与样本的正负比例对齐),异常信息。

特征级管理:总特征规模,有效/0/删除特征规模,新增/插入/删除的速率。

业务指标:uvctr,pvctr(小时级更新,T+1报表)。

线上与训练指标之间的对应关系如下表:

User-AUC:传统的AUC并不能完全描述uvctr,因为模型很可能学到了不同用户间的偏序关系,而非单个用户在不同offer下的点击偏序关系。为此,我们使用了User-AUC,它尽可能地模拟了线上uvctr的计算过程,在真实实验中,监控系统的uvctr小时报表,与实时模型输出的User-AUC高度一致。

目前算法已经在支付宝首页的多个推荐位上线。推荐系统根据用户的历史点击,融合用户画像和兴趣,结合实时特征,预估用户CTR,进而提升系统整体点击率。

我们以推荐位业务为例说明,其采用了经典的wide&deep的网络结构,其sparse部分包含百级别的group(见下段备注1)。一天流入约百亿样本,label的join窗口为固定时长。由于负样本占大多数,上游链路对正负样本做了1:8的降采样(见下文备注2)。

训练任务采用蚂蚁统一训练平台构建,并使用工作流进行定时调度,离线和在线任务的其他参数全部一致。Batchsize为512,每200步(即20万样本)评估结果,定时将模型通过图裁剪导出到线上系统。当任务失败时,调度系统会自动拉起,从checkpoint恢复。

该推荐业务的onlinelearning桶最近一周相比线上多模型融合最优桶提升4.23%,相比随机对照提升达34.67%。另一资讯推荐业务其最近一周,相比DNN基准uv-ctr提升+0.77%,pv-ctr提升+4.78%。实验效果相比有较大的提升。

备注1:groupembedding是将相似emb特征分组,各自lookup求和后再concat,使得特征交叉在更高层进行。其设计是考虑到不同group的特征差异很大(如user和item),不应直接对位求和。

备注2:inference打分仅做pointwise排序,采样虽改变数据分布但不改变偏序关系,因此并未在训练上做补偿。

弹性特征已经成为蚂蚁实时强化深度学习的核心要素。它只是第一步,在解决特征空间按需创建问题后,它会带来一个充满想象力的底层架构,众多技术都能在此基础上深挖:在工程上,可继续从分钟级向秒级优化,进一步提升链路实时性并实现模型增量更新;在算法上,我们正在探索如样本重要性采样,自动特征学习,在线线性规划与DNN的结合,实现优化器联合决策等技术。

本文作者为蚂蚁金服人工智能部认知计算组的基础算法团队,团队涉及图像、NLP、推荐算法和知识图谱等领域,带头人为国家知名算法专家褚崴,拥有定损宝和理赔宝等核心业务。

本文来自云栖社区合作伙伴“阿里巴巴机器智能”,如需转载请联系原作者。

THE END
1.相比于离线训练,在线训练的好处有什么?问答离线训练毕竟使用的是 T-1 或者 T-2 的数据去做的,没有对线上实时产生的行为数据进行利用,对于数据的时效性利用相对较差。 比如说,有这样的一个场景,今天我的整个平台只对 14 岁以下的少女做某个运营活动,而平台上充斥了大量的年龄段的客户,整个平台的交互行为都变了,这个时候你的模型还是 T-1 去做的,将https://developer.aliyun.com/ask/446535
2.蚂蚁金服核心技术:百亿特征实时推荐算法揭秘备注:弹性特征带来一个显著的优势:只要用足够强的L1稀疏性约束,在单机上就能调试任意大规模的特征训练,带来很多方便。我们的hashmap实现是KV化的,key是特征,value是vector的首地址。 离线训练优化 经过这样的改造后,在离线批量学习上,带来了以下变化: 在线训练优化 https://maimai.cn/article/detail?fid=1010621115&efid=mIQCHnkj0zjxlpygUmo5mg
3.科学网—[转载]群视角下的多智能体强化学习方法综述基于学习(深度学习、强化学习)设计的迭代式问题求解方法是离线策略学习的基础范式。由于环境及对手的非平稳性,离线训练的蓝图策略通常很难直接运用于在线对抗。在线博弈对抗过程与离线利用模拟多次对抗学习博弈过程不同,博弈各方处于策略解耦合状态,与离线批(batch)式策略学习方法不同,在线博弈对抗策略的求解本质是一个流https://blog.sciencenet.cn/home.php?mod=space&uid=3472670&do=blog&id=1422698
4.深度学习难分样本挖掘(HardMining)数据派关键是找出影响网络性能的一些训练样本,针对性的进行处理。 简单来说就是把难分的样本,剔除出来,放到另外一个地方里面。最后将难分样本,给负样本,加强训练分类器。但是,这样又会造成数据不平衡的问题,下面会讲到。 03、方法:离线和在线 在样本训练过程中,会将训练结果与GroundTruth计算IOU。通常会设定一个阈值(0.5https://www.shangyexinzhi.com/article/4713934.html
5.粗排优化探讨得物技术离线在线一致性分析 待补充实际效果 四 样本设计 粗排相较于精排样本选择偏差(SSB)的问题更加严重,借鉴召回经验,可以通过适当采样减少偏差。采样设计的目的也是希望离线训练样本尽可能与线上分布一致。 样本选择方法 负样本可选范围: 曝光未点击样本; 全库除转化外样本; https://blog.itpub.net/70027824/viewspace-3000851/
6.基于Kmeans聚类的CSI室内定位AET对于单个天线对得到fin,对于m个天线的每个天线对使用Kmeans算法,得到训练向量: 2.2 在线定位阶段 在线定位阶段采用与离线训练阶段相同的方法提取到m个天线对的指纹: 将提取到的指纹与训练阶段建立的数据库中的指纹作比较,即将获取到的第i个天线对的指纹矩阵与数据库中的第i个天线对的指纹矩阵,进行两个指纹矩阵中任http://www.chinaaet.com/article/3000057028
7.离线学习(训练)和在线学习(训练)在线训练和离线训练文章浏览阅读1.4w次,点赞4次,收藏4次。https://blog.csdn.net/a133521741/article/details/79221015_在线训练和离线训练https://blog.csdn.net/sinat_40966515/article/details/100073130
8.编程入门实战训练CodeCamp在线编程实战CodeCamp, freeCodeCamp, 在线编程实战训练,是一个以操作实验为基础的编程训练营,它包含了HTML,CSS,Javascript,jQuery,Bootstrap等编程语言编程闯关,让你在实践中提升自己的编程能力。https://www.w3cschool.cn/codecamp
9.强化学习离线模型离线模型和在线模型推荐系统里非常常见,并且往往非常的隐蔽的一种数据分布不一致的情况被称之为冰山效应,也就是说离线训练用的是有偏的冰山上的数据,而在线上预估的时候,需要预测的是整个冰山的数据,包括大量冰面以下的数据!我们看下面这张图。左边是我们的Baseline,绿色的表示正样本,红色表示负样本,灰色部分表示线上由于推荐系统的“https://blog.51cto.com/u_14499/11815202
10.使用Merlin分层参数服务器扩展推荐系统推理推荐模型有两种培训模式:离线和在线。在线培训将新的模型更新部署到实时生产中,对于推荐的有效性至关重要。HPS 雇佣无缝更新机制通过Apache Kafka– 基于消息缓冲区连接训练和推理节点,如图 5 所示。 图5. HugeCTR 推理在线更新机制 更新机制有助于 MLOps 工作流,支持在线/频繁以及离线/再培训更新,无需停机。它还通https://www.eet-china.com/mp/a159829.html
11.推荐系统完整的架构设计和算法(协同过滤隐语义)其中,数据上报和离线训练组成了监督学习中的学习系统,而实时计算和 A/B 测试组成了预测系统。另外,除了模型之外,还有一个在线存储模块,用于存储模型和模型需要的特征信息供实时计算模块调用。图中的各个模块组成了训练和预测两条数据流,训练的数据流搜集业务的数据最后生成模型存储于在线存储模块;预测的数据流接受业务https://cloud.tencent.com/developer/article/1508050
12.人工智能团队研究成果在TKDE发表:样本高效的离线转在线强化学习离线强化学习,即智能体从先前收集的数据集中学习的过程,已被广泛研究并在机器人控制、推荐系统、智慧医疗等领域取得了巨大成功。然而,由于受到离线数据集质量的限制,离线强化学习智能体的性能通常是次优的。因此,在部署之前,通常需要进一步通过在线交互对预训练的离线强化学习智能体进行微调。 http://icfs.jlu.edu.cn/info/1007/3101.htm
13.2020年最值得收藏的60个AI开源工具语言&开发李冬梅SiamMask 是一款实时在线目标跟踪与目标分割统一框架。技术简单、通用、快速高效。它可以对目标实时跟踪。此款库还包含预训练模型。 项目地址:https://github.com/foolwood/SiamMask DeepCamera 世界首个自动机器学习深度学习边缘 AI 平台 ARM GPU 上的深度学习视频处理监控,用于人脸识别以及更多方法。将数码相机变成人工https://www.infoq.cn/article/2uabiqaxicqifhqikeqw