Gorse推荐系统指南:制定推荐策略1推荐算法介绍:最新推荐最热推荐基于物品相似推荐基于用户相似推荐协同过滤推

Gorse推荐系统实现了很多类型的推荐算法,既包括了非个性化推荐算法,也包括了个性化推荐算法。实际上,没有一个推荐算法是万能的,只有将它们组合利用才能实现最好的推荐效果。

首先,本文介绍一下Gorse中的各类推荐算法,每一类推荐算法都有各种的优缺点。

某些场景下,用户会喜欢特定类型的物品,例子某游戏平台用户钟爱解谜类游戏、某视频平台用户喜欢看小姐姐跳舞。根据用户的历史记录和物品之间的相似度,就可以完成相似物品推荐。所以,相似物品推荐的关键在于计算物品之间的相似度。

Gorse计算物品相似度由三种模式,可以在配置文件中设置:

相似的用户之间也通常存在共同的喜好,例如计算机专业的学生一般会购买计算机类书籍、长辈喜欢购买保健品。

Gorse计算用户之间相似度同样有三种模式,同样在配置文件中制定:

基于相似物品和相似用户的推荐算法要求被推荐的物品需要通过其他用户或者其他物品和被推荐用户之间建立联系,这就局限了筛选推荐内容的范围。Gorse中的协同过滤推荐使用矩阵分解算法来推荐物品,训练算法将用户和物品映射为一个高维空间中的向量,用户对物品的喜好程度就是用户向量和物品向量的乘积。然而,协同过滤推荐的缺点就是无法利用用户和物品的标签信息,也无法处理新用户和新物品。

是否有一种算法可以结合相似推荐和协同过滤推荐各自的有点?那么就是Gorse推荐系统中的点击率预测模型。Gorse中的点击率预测模型为因子分解机,除了为每个用户和物品生成向量之外,还会给每个用户标签和物品标签生成向量,虽然因子分解机的效果不错,但是一般不会把它作为粗排的推荐算法。和协同过滤推荐、相似推荐相比,因子分解机预测时的计算复杂度非常高。Gorse的点击率预测模型的功能就是对上述推荐算法的结果进行融合排序。

单独的推荐算法无法很好地完成推荐任务,需要将多个推荐算法进行组合。Gorse提供了一个生成推荐结果的流程,我们可以在流程下制定适合于具体场景的推荐策略。推荐流程由两大部分构成:离线推荐和在线推荐。离线推荐主要从全体物品中为每个用户挑选推荐物品,缓存到Redis中。而在线推荐主要从拉取缓存的推荐结果,接着从推荐结果中删除已读内容,如果缓存的推荐结果已经用完,那么使用备用推荐算法实时生成推荐内容。

离线推荐由三阶段构成:

由于目前Gorse还未提供A/B测试功能,因此需要通过预览功能感性地制定推荐策略。

在线推荐有两个任务:

#Thefallbackrecommendationmethodforcold-startusers:#item_based:Recommendsimilaritemstocold-startusers.#popular:Recommendpopularitemstocold-startusers.#latest:Recommendlatestitemstocold-startusers.#Thedefaultvaluesis["latest"].fallback_recommend=["item_based","latest"]通过简单的配置,就可以得到一个支持多路召回、兼顾探索利用、能够服务降级的推荐系统了。

THE END
1.云旅程阶段了解如何验证和定义推动可行治理的公司策略。https://learn.microsoft.com/zh-cn/training/modules/accelerate-azure-migration-journey/4-cloud-journey-phases
2.强化学习强化学习中,离线策略和在线策略的区别是什么?请从原理和例在强化学习(RL)中,离线策略和在线策略是两种不同的学习和决策方法,它们各有优势和适用场景。 了解这两者的区别有助于选择适合的算法和策略进行有效的学习和决策。 接下来,我们将从原理和例子两个方面对离线策略和在线策略进行详细解释。 原理 1. 离线策略(Off-policy) https://blog.csdn.net/wq6qeg88/article/details/140999201
3.在线帮助信息离线策略,离线操作,生成策略,导入策略,离线过期,离线管理http://www.amoisoft.com/onlinehelp_ld/328.htm
4.基于离线策略的电力系统安全稳定在线附加紧急控制方法影响“在线预决策,实时匹配”紧急控制技术推广应用的关键因素之一在于难以对在线策略的适应性进行量化评估,通常还是凭经验预先设定在线策略的适用条件,其可靠性难以保证。[0004]综上所述,基于离线策略的紧急控制在电网大多数运行工况下能够保证电网的安全稳定,但控制策略的精度不高,通常过于保守,控制量过大;基于在线预https://www.xjishu.com/zhuanli/05/CN104779608.html
5.永磁同步电机参数辨识模型,在线辨识,离线辨识,电参数机械参数均可综上所述,永磁同步电机参数辨识技术是一项复杂而重要的技术工作。通过采用适当的参数辨识方法和技术应用手段,可以实现电参数和机械参数的准确辨识。同时,还需要结合实际情况选择不同的策略和方法,以实现在线和离线辨识的目的。在模型属性及回调函数设置方面,也需要充分考虑实际应用需求和技术特点等因素。https://blog.51cto.com/u_17186198/12813167
6.科学网—[转载]群视角下的多智能体强化学习方法综述基于学习(深度学习、强化学习)设计的迭代式问题求解方法是离线策略学习的基础范式。由于环境及对手的非平稳性,离线训练的蓝图策略通常很难直接运用于在线对抗。在线博弈对抗过程与离线利用模拟多次对抗学习博弈过程不同,博弈各方处于策略解耦合状态,与离线批(batch)式策略学习方法不同,在线博弈对抗策略的求解本质是一个流https://blog.sciencenet.cn/home.php?mod=space&uid=3472670&do=blog&id=1422698
7.详解经典强化学习算法,搞定“阿尔法狗”下围棋在线策略方法试图评估并提升和环境交互生成数据的策略,而离线策略方法评估和提升的策略与生成数据的策略是不同的。 这表明在线策略方法要求智能体与环境交互的策略和要提升的策略必须是相同的。 而离线策略方法不需要遵循这个约束,它可以利用其他智能体与环境交互得到的数据来提升自己的策略。 https://cloud.tencent.com/developer/article/2280864
8.线上线下融合教学的优势不足与发展策略内容努力为学生提供高质量,科学的教学服务,以有效满足学生个性发展和全面素质教育的要求。教师应注意,并不是所有的课程都可以使用线上线下混合教学方式进行教学。教师应深入学习教科书,明确学习目标,并为在线和离线学习选择适当的主题。逐步提高自身的信息素养和教学理念,在提高教学质量的同时,确保学生在学习中的核心地位。https://tpd.xhedu.sh.cn/cms/app/info/doc/index.php/92024
9.ANYSEC上网行为管理常见故障问题解析厂商动态(2)检查是否做流量策略限制了网速; (3)检查DNS配置是否正确。 21、IP和MAC发生冲突 在组织结构里绑定MAC。 22、在行为管理中做了禁止访问所有URL的策略后百度等常用网页不能正常使用 取消"其他网站"的选项即可。 23、QQ只能发在线文件,不能发离线文件 https://news.zol.com.cn/604/6044911.html
10.人工智能团队研究成果在TKDE发表:样本高效的离线转在线强化学习该研究提出了一种样本高效的离线转在线强化学习算法,旨在解决两个重要挑战:(1)探索局限性。离线强化学习通常对离线策略评估算法施加严格的限制,以避免采样分布外状态-动作对。由于探索行为策略通常由目标策略派生,这种受限制的预训练策略往往执行保守的动作,使得探索行为策略无法寻找可能产生高奖励并导致长期收益的新颖状态http://icfs.jlu.edu.cn/info/1007/3101.htm
11.安秉网盾加密软件让数据安全如影随形离线用户管理(短期):若员工临时出差在外,可以通过离线策略对其进行管理。设置员工离线的时间,比如72小时,当计算机离线大于72小时后,所有加密文件将不能打开。 加解密网关 安全网关对访问服务器的计算机进行严格的身份验证,防止未授权的用户和进程访问服务器获取机密数据。 通过上传解密、下载加密及通讯加密,实现对加密文档https://www.anbingsoft.cn/news/gscyjm/2023/0914/957.html
12.河北加密软件透明加密策略 透明加密:在文件创建或编辑过程中自动强制加密,对用户操 作习惯没有任何影响,不需手动输入密码。当文件通过非正常 渠道流至外部,打开时会出现乱码或无法打开,并且始终处于 加密状态。加密过程在操作系统内核完成,保证了加密的高效 性。 半透明加密:用户可以打开加密文件,新建的文件不加密。 解密在线审批https://www.anbingsoft.com/zhuanti/hebei/shijiazhuang/
13.强化学习蒙特卡罗之离线策略在线策略和离线策略,也是观测到 greedy 产生的策略有一定的随机性,不适合做最优策略。策略评估和策略改进能否用两种策略呢?根据答案从而产生了 on-policy 和off-policy 两种方案。 On-policy (在线策略)是指两个过程中使用的是同一个策略。 离线策略 off policy https://www.jianshu.com/p/20feefe77239
14.一种基于海量策略智能处理平台的全市场多品种金融资管系统.pdf一种基于海量策略智能处理平台的全市场多品种金融资管系统.pdf,本发明公开了一种基于海量策略智能处理平台的全市场多品种金融资管系统,包括:交易平台,数据平台和策略平台。负责策略包括离线策略生产管理子系统和在线策略运行管理子系统,策略平台采用机器学习算法来计算https://max.book118.com/html/2023/1209/5001301144011022.shtm
15.本地谷歌SEO现状:专家们权衡行业特定策略—AdWeb全球站与您的客户交谈。向他们提问并了解他们的担忧。离线进行重要对话仍然在您的营销策略中发挥重要作用。 阿曼达乔丹:金融服务 审查策略应包括离线策略。社区外展和参与至关重要。我认为任何咨询在线声誉管理的人都应该关注公司的离线声誉。 发推文! 每个企业都是不同的,没有一种策略是万能的。与谷歌搜索引擎优化中的所有https://www.adwebcloud.com/www.adwebcloud.com/bdggsxzzjmqhhyt/
16.巨量广告升级版投放方法论配合竞价逻辑调整,创意策略也实现关键迭代:素材离线优选——>全量素材在线优选,从而使得基于新版投放方法论的投放方式,效果更优。 创意策略——以素材为核心 看看底层策略 举个例子说明:为什么需要“素材为核心的投放策略”。 A 公司只允许同学投递一个岗位,所以同学只能选择成功概率最大的岗位进行简历投递。 https://www.niaogebiji.com/article-551251-1.html
17.隐私政策通知与政策法务LEGO.comCN客户可以从我们的在线乐高商店购买产品,并将产品递送至他们所指定的地点 客户可以注册任何他们希望使用的帐户和服务 客户可以使用我们为他们提供的在线和离线乐高只要您的帐户处于活动状态或需要提供服务,我们将一直保留您的个人信息。针对我们处理的每一类个人信息,我们都有所谓的保留策略。 https://www.lego.com/privacy-policy/
18.在对齐AI时,为什么在线方法总是优于离线方法?澎湃号·湃客他们通过消融研究发现,提升离线优化的一种有效方法是生成分布上接近起始 RLHF 策略(这里就刚好是 SFT 策略)的数据,这本质上就模仿了在线算法的起始阶段。 优化性质 该团队发现判别能力和生成能力之间存在一种有趣的相互作用:尽管离线策略的分类能力胜过在线策略,但离线策略生成的响应却更差(见图 6、7、8)。 https://www.thepaper.cn/newsDetail_forward_27434433
19.基于优化算法的插电混动PHEV能量管理策略概览目前应用较多的EA 包括粒子群算法(Particle swarm optimization, PSO),遗传算法(Genetic algorithm,GA),拟退火算法(Simulated annealing,SA),蚁群算法(Ant colony optimization, ACO),差分进化算法(Differential evolution, DE)等,针对于PHEV 能量管理问题,该算法现阶段均采用离线运算出最优结果,再与在线策略相结合的机制https://www.yoojia.com/article/9615930982477810013.html
20.支持形态学/动力学买卖点分析计算,多级别K线联立,区间套策略开放式的缠论python实现框架,支持形态学/动力学买卖点分析计算,多级别K线联立,区间套策略,可视化绘图,多种数据接入,策略开发,交易系统对接; - bopo/chan.pyhttps://github.com/bopo/chan.py
21.神策数据:跨境电商企业如何借助一方数据CDP实现业务增长?运营策略通常分为在线策略和离线策略。在线策略是指通过弹窗优惠券、活动专场、搜索关键词等触达站内用户,当用户还在站内的时候尽可能推动用户转化、降低转化成本。而长线用户运营,通常是通过离线策略触达站外用户并影响他们回到站内。 电子邮件是跨境电商常用的触达方式,虽然某些企业的运营计划可以通过电子邮件触达上万https://tech.china.com/article/20230206/022023_1219439.html