AWAC:使用离线数据集加速在线强化学习技术博客技术支持京天机器人官网

该方法通过从先前的数据集(专家演示,先前的实验数据或随机探索数据)进行离线训练,然后通过在线交互快速进行微调来学习复杂的行为

经过强化学习(RL)训练的机器人有潜力用于各种挑战性的现实世界中的问题。要将RL应用于新问题,通常需要设置环境,定义奖励功能,并通过允许机器人从头开始探索新环境来训练机器人解决任务。尽管这最终可能行得通,但是这些“在线”RL方法非常耗费数据,并且针对每个新问题重复执行这种数据效率低下的过程,因此很难将在线RL应用于现实世界中的机器人技术问题。如果我们能够在多个问题或实验之间重用数据,而不是每次都从头开始重复数据收集和学习过程。这样,我们可以大大减少遇到的每个新问题的数据收集负担。

图1:使用离线数据集加速在线RL的问题。在(1)中,机器人完全从离线数据集中学习策略。在(2)中,机器人可以与世界互动并收集策略样本,以改进策略,使其超出脱机学习的范围。

我们使用标准基准HalfCheetah移动任务来分析从离线数据学习和后续的微调问题中的挑战。以下实验是使用先前的数据集进行的,该数据集包含来自专家策略的15个演示和从这些演示的行为克隆中采样的100个次优轨迹。

图2:与非策略方法相比,基于策略的方法学习起来较慢,这是因为非策略方法能够“缝合”良好的轨迹,如左图所示右:在实践中,我们看到在线改进缓慢使用策略上的方法。

1.数据效率

利用诸如RL演示之类的先前数据的一种简单方法是,通过模仿学习对策略进行预训练,并通过基于策略的RL算法(例如AWR或DAPG)进行微调。这有两个缺点。首先,先验数据可能不是最佳的,因此模仿学习可能无效。第二,基于策略的微调是数据效率低下的,因为它不会在RL阶段重用先前的数据。对于现实世界的机器人技术而言,数据效率至关重要。考虑右边的机器人,尝试以先前的轨迹达到目标状态T1和T2。策略上的方法不能有效地使用此数据,但是可以有效地“缝合”进行动态编程的策略外算法T1和T2以及使用价值函数或模型。在图2的学习曲线中可以看到这种效果,其中按策略使用的方法要比按策略使用的参与者批评方法慢一个数量级。

图3:使用离线策略RL进行离线培训时,引导错误是一个问题。左:该策略利用了远离数据的错误Q值,从而导致Q函数的更新不佳。中:因此,机器人可能会执行超出分配范围的动作。正确:引导错误在使用SAC及其变体时会导致不良的离线预训练。

原则上,该方法可以通过贝尔曼自估计未来回报的价值估计V(s)或行动价值估计Q(s,a),从非政策性数据中高效学习。但是,当将标准的非策略参与者批评方法应用于我们的问题(我们使用SAC)时,它们的性能较差,如图3所示:尽管重放缓冲区中已有数据集,但这些算法并未从脱机中显着受益训练(通过比较图3中的SAC(从头开始)和SACfD(在先)行可以看出)。此外,即使策略已通过行为克隆进行了预训练(“SACfD(预训练)”),我们仍然会观察到性能最初出现下降。

此挑战可归因于策略外引导错误累积。在训练期间,Q估计值将不会完全准确,尤其是在推断数据中不存在的动作时。策略更新利用了高估的Q值,使估计的Q值更糟。该问题如图所示:错误的Q值导致对目标Q值的错误更新,这可能导致机器人采取较差的措施。

3.非平稳行为模型

诸如BCQ,BEAR和BRAC之类的现有脱机RL算法建议通过防止策略偏离数据太远来解决引导问题。关键思想是通过将策略π限制为接近“行为策略”πβ来防止引导错误,即重播缓冲区中存在的动作。下图说明了这个想法:通过从πβ采样动作,可以避免利用远离数据分布的错误Q值。

但是,πβ通常是未知的,尤其是对于脱机数据,必须从数据本身进行估计。许多离线RL算法(BEAR,BCQ,ABM)明确地将参数模型拟合到来自重播缓冲区的πβ分布的样本。在形成估计值后,现有方法以各种方式实施策略约束,包括对策略更新的惩罚(BEAR,BRAC)或针对策略训练的采样动作的体系结构选择(BCQ,ABM)。

尽管具有约束的离线RL算法在离线状态下表现良好,但仍难以通过微调来改进,如图1中的第三幅图所示。我们看到,纯离线RL性能(图1中为“0K”)要好得多。比SAC。但是,通过在线微调的其他迭代,性能提高非常缓慢(从图1中的BEAR曲线的斜率可以看出)。是什么原因导致这种现象?

问题在于当在微调期间在线收集数据时,要建立一个准确的行为模型。在脱机设置中,行为模型仅需训练一次,但在在线设置中,必须在线更新行为模型以跟踪传入数据。在线(在“流”环境中)训练密度模型是一个具有挑战性的研究问题,在线和离线数据的混合导致了潜在的复杂多模式行为分布,这使难度变得更大。为了解决我们的问题,我们需要一种策略外的RL算法,该算法会约束该策略以防止脱机不稳定和错误累积,但并不过于保守,以至于由于行为建模不完善而无法进行在线微调。我们提议的算法(将在下一部分中讨论)通过采用隐式约束来实现。

图4:AWAC的示意图。高权重的过渡将以高权重回归,而低权重的过渡将以低权重回归。右:算法伪代码。

那么,这在解决我们较早提出的问题方面的实际效果如何?在我们的实验中,我们表明,我们可以从人类示范和非政策性数据中学习困难,高维,稀疏的奖励灵巧操纵问题。然后,我们使用随机控制器生成的次优先验数据评估我们的方法。本文还包括标准MuJoCo基准环境(HalfCheetah,Walker和Ant)的结果。

灵巧的操纵

图5.顶部:在线培训后显示的各种方法的性能(笔:200K步,门:300K步,重新安置:5M步)。下图:显示了具有稀疏奖励的敏捷操作任务的学习曲线。步骤0对应于离线预训练后开始在线训练。

我们的目标是研究代表现实世界机器人学习困难的任务,其中最重要的是离线学习和在线微调。其中一种设置是Rajeswaran等人在2017年提出的一套灵巧操作任务。这些任务涉及使用MuJoCo模拟器中的28自由度五指手进行复杂的操作技能:笔的手旋转,通过解锁手柄打开门,捡起球体并将其重新定位到目标位置。这些环境面临许多挑战:高维动作空间,具有许多间歇性接触的复杂操纵物理以及随机的手和物体位置。这些环境中的奖励功能是任务完成的二进制0-1奖励。Rajeswaran等。为每个任务提供25个人工演示,虽然这些演示不是完全最佳的,但确实可以解决任务。由于此数据集非常小,因此我们通过构造行为克隆策略,然后从该策略中进行采样,又生成了500条交互数据轨迹。

使用脱离策略的RL进行强化学习的优势在于,我们还可以合并次优数据,而不仅仅是演示。在本实验中,我们使用Sawyer机器人在模拟的桌面推动环境中进行评估。

为了研究从次优数据中学习的潜力,我们使用了由随机过程生成的500条轨迹的非政策数据集。任务是将对象推入40cmx20cm目标空间中的目标位置。

结果显示在右图中。我们看到,尽管许多方法以相同的初始性能开始,但是AWAC可以在线上最快地学习,并且实际上能够有效地使用离线数据集,这与某些完全无法学习的方法相反。

能够使用先前的数据并在新问题上快速进行微调,为研究开辟了许多新途径。我们对使用AWAC从RL中的单任务机制到多任务机制以及任务之间的数据共享和通用化感到非常兴奋。深度学习的优势在于其在开放世界环境中进行概括的能力,我们已经看到,它改变了计算机视觉和自然语言处理的领域。为了在机器人技术中实现相同类型的概括,我们将需要利用大量先验数据的RL算法。但是机器人技术的一个主要区别是,为一项任务收集高质量的数据非常困难-通常与解决任务本身一样困难。这与例如计算机视觉相反,在计算机视觉中,人可以标记数据。因此,主动数据收集(在线学习)将成为难题的重要组成部分。

这项工作还提出了许多算法方向。请注意,在这项工作中,我们专注于策略π和行为数据πβ之间的不匹配动作分布。在进行非政策学习时,两者之间的边际状态分布也不匹配。凭直觉,考虑两个解决方案A和B的问题,其中B是更高收益的解决方案,而非政策性数据则说明了提供的解决方案A。即使机器人在在线浏览过程中发现了解决方案B,非策略数据仍主要包含来自路径A的数据。因此,Q函数和策略更新是针对遍历路径A时遇到的状态进行计算的,即使它不会遇到这些状态执行最佳策略时。以前已经研究了这个问题。考虑到两种类型的分布不匹配,可能会导致采用更好的RL算法。

最后,我们已经在使用AWAC作为加快研究速度的工具。当我们着手解决任务时,我们通常不会尝试使用RL从头开始解决它。首先,我们可以遥控机器人以确认任务可以解决;那么我们可能会进行一些硬编码的策略或行为克隆实验,以查看简单的方法是否已经可以解决它。使用AWAC,我们可以保存这些实验中的所有数据,以及其他实验数据(例如超参数扫描RL算法时的数据),并将其用作RL的先前数据。

DonghuRobotLaboratory,2ndFloor,BaoguInnovationandEntrepreneurshipCenter,WuhanCity,HubeiProvince,ChinaTel:027-87522899,027-87522877

THE END
1.离线强化学习算法集锦BCQ是一种离线行为克隆算法,从离线数据中学习策略,并通过Q值校正来改进性能。 2、BEAR (Bootstrapping Error Accumulation Reduction) BEAR是一种离线强化学习算法,通过利用离线数据进行训练,并使用自举方法来减少误差积累。 3、TD3-BC (Twin Delayed Deep Deterministic Policy Gradient with Behavior Cloning) https://blog.csdn.net/weixin_45616285/article/details/136629915
2.强化学习离线模型离线模型和在线模型强化学习离线模型 离线模型和在线模型 在推荐算法领域,时常会出现模型离线评测效果好,比如AUC、准召等指标大涨,但上线后业务指标效果不佳,甚至下降的情况,比如线上CTR或CVR下跌。 本文尝试列举一些常见的原因,为大家排查问题提供一点思路。 1. 离线、在线特征不一致https://blog.51cto.com/u_14499/11815202
3.离线强化学习(OfflineRL)总结(原理数据集算法复杂性分析离线强化学习(Offline RL)作为深度强化学习的子领域,其不需要与模拟环境进行交互就可以直接从数据中学习一套策略来完成相关任务,被认为是强化学习落地的重要技术之一。本文详细的阐述了强化学习到离线强化学习的发展过程,并就一些经典的问题进行了解释和说明。 https://cloud.tencent.com/developer/article/2119884
4.人工智能团队研究成果在TKDE发表:样本高效的离线转在线强化学习算法实验室人工智能团队在D4RL基准测试上进行了大量实验来说明本研究中提出的算法的优越性。实验结果表明,本研究提出的算法在样本效率方面显著优于最先进的离线转在线强化学习算法。 相关的研究成果近期发表在TKDE上,文章第一作者为吉林大学未来科学国际合作联合实验室博士生郭思源,通讯作者为吉林大学陈贺昌教授和常毅教授。http://icfs.jlu.edu.cn/info/1007/3101.htm
5.离线强化学习因此,离线强化学习(offline reinforcement learning)的目标是,在智能体不和环境交互的情况下,仅从已经收集好的确定的数据集中,通过强化学习算法得到比较好的策略。离线强化学习和在线策略算法、离线策略算法的区别如图 18-1 所示。图18-1 离线强化学习和在线策略算法、离线策略算法的区别https://hrl.boyuai.com/chapter/3/%E7%A6%BB%E7%BA%BF%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0/
6.在对齐AI时,为什么在线方法总是优于离线方法?澎湃号·湃客AI 对齐是否必需在线强化学习? 对于这个问题,人们希望既知道其理论上的答案,也希望明晰实验给出的解答。 从实证角度看,相比于大家常用的在线 RLHF(由偏好建模和从模型采样组成),离线算法实现起来要简单得多,成本也低得多。因此,收集有关离线算法的充分性的证据可让 AI 对齐变得更加简单。另一方面,如果能明晰常用在https://www.thepaper.cn/newsDetail_forward_27434433
7.科学网—[转载]强化学习在资源优化领域的应用基于这种行业趋势,本文针对强化学习算法在资源优化领域的应用展开调研,帮助读者了解该领域最新的进展,学习如何利用数据驱动的方式解决资源优化问题。鉴于资源优化问题场景众多、设定繁杂,划分出3类应用广泛的资源优化问题,即资源平衡问题、资源分配问题、装箱问题,集中进行调研。在每个领域阐述问题的特性,并根据具体的问题特性https://blog.sciencenet.cn/blog-3472670-1312677.html
8.强化学习的基本概念在线学习和离线学习针对的是在强化学习模型在训练过程中交互数据的使用方式。在线学习的强化学习模型,会在一个交互之后,立即用本次交互得到的经验进行训练。而离线学习的强化学习模型,往往是先将多个交互的经验存储起来,然后在学习的时候,从存储的经验中取出一批交互经验来学习。 https://www.jianshu.com/p/28625d3a60e6
9.一种用于医学数据的强化学习算法模型构建方法和设备专利在线阅读 下载 引用 收藏 分享 打印 摘要:本发明涉及医学数据技术领域,具体涉及一种用于医学数据的强化学习算法模型构建方法和设备,在本申请中,结合了BCQ和CQL两种算法的优势,减少了离线强化学习中的外推误差,使得强化学习模型生成更合理的动作;并且为强化学习算法模型建立了损失函数,提升了原始动作的评分,降低了生成动https://d.wanfangdata.com.cn/patent/CN202311576836.1
10.NeurIPS2022赋能产业界的人工智能研究新趋势图1:自动强化学习算法框架(上);搜索过程可视化图(下) 自提升离线强化学习 论文链接:https://www.microsoft.com/en-us/research/publication/bootstrapped-transformer-for-offline-reinforcement-learning/ 项目主页:https://seqml.github.io/bootorl/ 随着强化学习在真实世界场景中的需求逐渐增大,作为一种新的强化学习https://www.msra.cn/zh-cn/news/features/neurips-2022-industry-ai
11.基于深度强化学习的水面无人艇路径跟踪方法4.为此,公开号为cn113625725a的中国专利就公开了《一种水面无人艇路径跟踪控制方法》,包括:设定期望跟踪路径,将期望跟踪路径离散化形成期望路径点阵;判断无人艇距离期望路径点阵的起始点的距离;根据设计参数和无人艇位置确定参考点的位置,根据路径曲率信息求得参考点处的曲率,然后根据制导算法公式求得加速度:计算由加https://www.xjishu.com/zhuanli/54/202210772926.html/
12.万字长文总结如何解决"稀疏奖励(SparseReward)"下的强化学习本文是对强化学习中行为克隆(Behavioral Cloning,BC)方法的改进,最新接收于 ICLR2020。本文使用了一个简单、稳定的奖励:将与示范状态下的示范动作相匹配的动作奖励 + 1,而其它动作奖励为 0,引入 Soft-Q-Learning 算法,提出了适用于高维、连续、动态环境的模仿学习算法。 https://www.zhuanzhi.ai/document/7f6d15f412639a573254a0f80300779a
13.一种基于深度强化学习的三维装箱方法.pdf想预览更多内容,点击免费在线预览全文 免费在线预览全文 本发明涉及一种基于深度强化学习的三维装箱方法,属于物流及物品装箱技术领域。该方法包括训练和使用两个阶段,在训练阶段通过DoubleDQN算法使用训练数据训练模型,从历史经验中学习;在使用阶段利用训练好的模型作为动作评判标准进行决策,产生具体的装箱方案。该方法将大https://max.book118.com/html/2023/0830/6152000235005221.shtm
14.仙启POLIXIR REVIVE SDK是一款数据驱动的强化学习(RL)工具包,它集成了南栖仙策的通用智能决策算法,专注于解决离线强化学习问题。该工具包利用历史数据来学习最优策略, 而无需与真实环境进行额外交互,从而实现决策过程的自动化并率先实现真实业务的落地。 商业版 https://revive.cn/sdk
15.基于可变保守程度离线强化学习的机器人运动控制方法为了解决以保守Q学习(Conservative Q-Learning, CQL)为代表的离线强化学习算法保守程度固定不变,导致学习到的策略过于保守的问题,文中提出了一种名为可变保守程度Q学习(Variable Conservativeness Q-Learning, VCQL)的离线强化学习算法。VCQL算法在CQL算法的基础上引入了对于状态动作对偏离数据集的程度衡量,并能够根据偏https://wap.cnki.net/touch/web/Journal/Article/JZDF20240510007.html