知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。
2、会用待定系数法求圆的标准方程。
过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方
程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。
情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。
教学重点:圆的标准方程
教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。教学过程:
1、情境设置:
在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?探索研究:
2、探索研究:
确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件
r=①
化简可得:222
()()xaybr-+-=②
引导学生自己证明2
2
()()xaybr-+-=为圆的
方程,得出结论。
方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。
3、知识应用与解题研究
例(1):写出圆心为(2,3)A-半径长等于5的圆的方程,并判断点12(5,7),(1)MM--是否在这个圆上。
分析探求:可以从计算点到圆心的距离入手。
探究:点00(,)Mxy与圆222
()()xaybr-+-=的关系的判断方法:
(1)22
00()()xayb-+->2r,点在圆外(2)22
00()()xayb-+-=2r,点在圆上(3)22
00()()xayb-+-<2r,点在圆内
例(2):ABC的三个顶点的坐标是(5,1),(7,3),(2,8),ABC--求它的外接圆的方程
师生共同分析:从圆的标准方程2
()()xaybr-+-=可知,要确定圆的标准方程,可用
待定系数法确定abr、、三个参数.(学生自己运算解决)
例(3):已知圆心为C的圆:10lxy-+=经过点(1,1)A和(2,2)B-,且圆心在:10lxy-+=上,求圆心为C的圆的标准方程.
师生共同分析:如图确定一个圆只需确定圆心位置与半径大小.圆心为C的圆经过点(1,1)A和(2,2)B-,由于圆心C与A,B两点的距离相等,
所以圆心C在险段AB的垂直平分线m上,又圆心C在直线l上,因此圆心C是直线l与直线m的交点,半径长等
于CA或CB。
(教师板书解题过程。)
总结归纳:(教师启发,学生自己比较、归纳)比较例(2)、例(3)可得出ABC外接圆的标准方程的两种求法:
①、根据题设条件,列出关于abr、、的方程组,解方程组得到abr、、得值,写出圆的标准方程.根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程.
提炼小结:
1、圆的标准方程。
2、点与圆的位置关系的判断方法。
3、根据已知条件求圆的标准方程的方法。
作业:课本130p习题4.1第2、3、4题教学反思:
4.1.2圆的一般方程
知识与技能:(1)在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数
特征,由圆的一般方程确定圆的圆心半径.掌握方程x2+y2+Dx+Ey+F=0表示圆的条件.
(2)能通过配方等手段,把圆的一般方程化为圆的标准方程.能用待
定系数法求圆的方程。
(3):培养学生探索发现及分析解决问题的实际能力。
过程与方法:通过对方程x2+y2
+Dx+Ey+F=0表示圆的条件的探究,培养学生探索发现及分析解
决问题的实际能力。
情感态度价值观:渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,
勇于探索。
教学重点:圆的一般方程的代数特征,一般方程与标准方程间的互化,根据已知条件
确定方程中的系数,D、E、F.
教学难点:对圆的一般方程的认识、掌握和运用
教具:多媒体、实物投影仪
教学过程:
课题引入:
问题:求过三点A(0,0),B(1,1),C(4,2)的圆的方程。
利用圆的标准方程解决此问题显然有些麻烦,得用直线的知识解决又有其简单的局限性,那么这个问题有没有其它的解决方法呢?带着这个问题我们来共同研究圆的方程的另一种形式——圆的一般方程。
探索研究:
请同学们写出圆的标准方程:
(x-a)2+(y-b)2=r2,圆心(a,b),半径r.
把圆的标准方程展开,并整理:
x2+y2-2ax-2by+a2+b2-r2=0.
取2
,2,2rbaFbEaD-+=-=-=得
022=++++FEyDxyx①
这个方程是圆的方程.
反过来给出一个形如x2+y2+Dx+Ey+F=0的方程,它表示的曲线一定是圆吗?