人类语言可划分为两大类:自然语言与形体语言,人脸表情是形体语言中的一部分,一般是由人的眼部肌肉、口部肌肉与脸部肌肉等通过运动而形成。表情往往是人的情感变化可通过面部而观察出的一种情绪表现,是人类情绪的一种客观外显行为。人脸表情识别广泛应用于社会情感分析、医疗诊断、安全驾驶、交通出行、商业宣传与刑事案件侦破等领域。人脸表情识别是在人脸表情的基础之上进行的,人脸表情识别的发展可大致分为4个阶段。第1阶段可追溯到20世纪70年代,研究人员根据人脸的五官特征来识别不相同的人脸,采用基于几何结构特征的算法和基于模板匹配的算法进行人脸识别。第2阶段,Belhumeur等人在人脸识别的实践中加入Fisher准则,采用隐马尔可夫法和基于Fisher的线性判别法进行人脸识别的研究。第3阶段,人脸识别研究更加具有参考性和现实意义,Gabor小波变换特征提取等算法的出现使得人脸识别的研究更加精准。第4阶段,大数据时代的到来,人脸识别的数据库不断壮大,CNN卷积神经网络等算法的涌现不断地推动着人脸识别的发展。
1.2.1人脸表情识别的要素
在20世纪70年代中期,著名美国心理学家Ekman通过实验将人脸面部表情划分为6类:高兴(Happy)、悲伤(Sad)、害怕(Fear)、生气(Angry)、厌恶(Disgust)和惊讶(Surprise)[1]。人脸表情可传达人类的特定情感信息,比如高兴通常指听到好消息或者见到想见的人,一般会通过舒展眉头、眼存笑意与嘴角上扬来表达。基于此,人们不断的优化发展着人脸表情识别技术。在这个研究分析过程中,表情数据集是人脸表情识别研究中一个至关重要的环节。其中较为典型的有20世纪90年代Lyons等人建立的一个以日本女性为代表的表情数据集(JAFFE)。该数据集共收录日本女性的213张图像,其中包含10名日本女性在相同环境下做出的高兴、悲伤、中性、厌恶、愤怒、恐惧以及惊讶这7种表情,每一种表情大约包含30张图像[2]。具体图像如图1所示。
图1JAFFE表情数据集部分图像
1.2.2人脸表情识别的过程
图2人脸表情分析过程
1.3系统研发
2人脸表情识别技术在教育中的应用场景分析
2.1课堂教学
传统课堂教学主要是一种教师“讲”与学生“听”的面对面教学形式。通过与学生面对面的互动交流,教师可以从学生的表情、神态以及语言中获取到学生是否理解领会所学知识,同时也可进行表情与情感分析,及时调整教学节奏、调动课堂气氛与调整教学策略。传统的这种情感分析往往是基于教师实践经验后的积累,面向的是学生群体的大部分,无法照顾到学生个体的个性化需求。借助于人脸表情识别技术的课堂教学应用,可对学生学习状态做出及时反馈和调整,例如对教学内容疑惑时,学生表情为眉头紧皱、头部倾斜;对教学内容理解时,则表情为展眉愉悦、头部上扬;对教学内容厌恶时,表情为眉头微皱、头部低下等。人脸表情识别技术在面对面课堂教学中应用,便于教师对学生进行即时情感分析与教学反馈,显著地提升教学的效果和质量。课堂教学中学生的面部表情类型主要分析如表2所示。
2.2在线教育
2.3学校生活
互联网时代的到来给人们的日常生活带来极大便利。智慧校园、智慧教室、智慧课堂、以及智慧食堂等一系列教育与互联网深度融合的教育应用场景应运而生。人脸表情识别技术所支持的系统的广泛普及,不仅在学校生活的日常运作中节省人力与物力,而且使得各项工作高效且有序进行,甚至比之前人工实际操作所获取的数据更加准确且具有代表性。人脸表情识别技术在学校生活中的广泛应用将会促进学校向智慧化、数字化与信息化方向深入发展,进一步优化学校管理、学校安防与教学管理等工作。
3人脸表情识别技术的教育应用问题分析
3.1课堂教学表情识别的应用与实践定位不明确
3.2在线教学表情识别的精准度有待于提升
在非面对面的在线教学中,人脸表情识别技术存在无法准确识别人脸、人脸识别错误等问题。产生上述问题的原因有如下几点:①模糊图像干扰。人脸图像可能会受当时环境中的光照强度、镜头变焦、曝光度以及学生个人动作幅度过大等一些不稳定因素干扰,造成图像识别模糊甚至出现马赛克等现象,导致无法准确识别人脸表情;②人脸角度问题。大部分学生在上课过程中很难保持一个固定不变的坐姿进行课堂活动,学生上课时的状态可能存在抬头听课与侧头发呆等几种情况,不同的人脸角度极容易造成所采集的面部信息部分缺失,以及设备所拍摄的图像缺乏完整性等问题。
3.3学校生活应用支持度不高
3.4教育大数据隐私问题
4人脸表情识别技术的教育应用问题对策
4.1识别应用的定位性要明确
4.2识别应用的精准度要提升
要有效解决人脸表情识别技术在课堂教学中人脸图像识别精准性不高等问题,需要改进人脸图像采集设备以提高采集精准度并完善分析方法,具体解决方案如下:①提高采集精准度。首先,考虑外在因素影响,改进摄像机以及其他电子硬件设备,采用分辨率更高以及性能更好的摄像机进行人脸图像捕捉,以便更加高效准确地捕捉与人脸相匹配的图像。②考虑内在因素影响,摄像机在课堂教学采集人脸图像的同时可以选择增加人脸图像智能质量评估环节,其宗旨是过滤人脸图像识别过程中的模糊图像、误识图像以及残缺图像,确保已识别出的人脸图像是准确且完好无损的;③完善分析方法。视频流表情分析极其容易受到自然环境光照强度以及人物自身脸部姿态等影响,因此在人脸表情图像识别预处理环节要严格把关以确保人脸表情图像获取的准确性。
4.3识别应用的支持度要深入
人脸表情识别技术在学校日常生活中的应用并不是很普遍,要实现人脸表情识别技术在学校生活中的广泛应用,需要加强其对学校生活中应用的支持度。首先,需要解决资金问题。人脸表情识别技术的引入必然会耗费大量的人力与物力,学校需要有强大的资金扶持方可成功引入该技术。其次,制定意外情况发生的防治措施。避免意外情况带来的种种挑战,学校需安装发电系统,以保证人脸表情识别技术的正常运行,避免停电等情况带来的不必要损失。总之,人脸表情识别技术具有便捷、高效、低成本与高准确性等优势,学校需要加大其对日常生活应用的支持度。
4.4识别应用的技术性要适度
参考文献:
[1]徐琳琳,张树美,赵俊莉.基于图像的面部表情识别方法综述[J].计算机应用,2017,37(12):3509-3516+3546.
[2]叶继华,祝锦泰,江爱文,等.人脸表情识别综述[J].数据采集与处理,2020,35(1):21-34.
[3]阮静.基于计算思维培养的人工智能课程设计实践探究——以《人脸识别》一课为例[J].中国现代教育装备,2021(22):18-20.
[4]于洋.人脸识别医疗应用初步探讨[J].中国信息化,2021(11):80-81.
[5]董雷刚,崔晓微,赵阳光,等.基于人脸识别+Android技术的高校学生考勤系统设计[J].电脑知识与技术,2021,17(32):91-93.
[6]黄振龙,吴林煌.基于Yolov5s和Dlib的视频人脸识别[J].电脑知识与技术,2021,17(32):94-96.
[7]张曼云,熊杰,苏有为,等.基于嵌入式人工智能芯片的人脸识别安防报警方法[J].信息技术与信息化,2021(10):233-236.
[8]周楠,周建设.基于深度学习的学生行为分析与教学效果评价[J].现代教育技术,2021,31(8):102-111.
[9]张悦欣,付晓峰.结合卷积神经网络与OpenCV的人脸表情识别[J].电脑知识与技术,2021,17(5):183-185.
[10]魏艳涛,雷芬,胡美佳,等.学生表情识别研究综述[J].中国教育信息化,2020(21):48-55.
[11]贾鹂宇,张朝晖,赵小燕,等.基于人工智能视频处理的课堂学生状态分析[J].现代教育技术,2019,29(12):82-88.
[12]韩丽,李洋,周子佳,等.课堂环境中基于面部表情的教学效果分析[J].现代远程教育研究,2017(4):97-103+112.
[13]孙波,刘永娜,陈玖冰,等.智慧学习环境中基于面部表情的情感分析[J].现代远程教育研究,2015(2):96-103.