机器学习和深度学习资源汇总(陆续更新)Hi,王松柏

本篇博客的目地,是对工作学习过程中所遇所见的一些有关深度学习、机器学习的优质资源,作分类汇总,方便自己查阅,也方便他人学习借用。

主要会涉及一些优质的理论书籍和论文、一些实惠好用的工具库和开源库、一些供入门该理论入门所用的demo等等。

由于本博客将不定期更新,尽量将较为前沿的深度学习、机器学习内容整理下来,需要转载的同学尽量附上本文的链接,方便获得最新的内容。

DetectionResults:VOC2012

DeepNeuralNetworksforObjectDetection

OverFeat:IntegratedRecognition,LocalizationandDetectionusingConvolutionalNetworks

Richfeaturehierarchiesforaccurateobjectdetectionandsemanticsegmentation

ScalableObjectDetectionusingDeepNeuralNetworks

Scalable,High-QualityObjectDetection

SpatialPyramidPoolinginDeepConvolutionalNetworksforVisualRecognition

DeepID-Net:DeformableDeepConvolutionalNeuralNetworksforObjectDetection

ObjectDetectorsEmergeinDeepSceneCNNs

segDeepM:ExploitingSegmentationandContextinDeepNeuralNetworksforObjectDetection

ObjectDetectionNetworksonConvolutionalFeatureMaps

ImprovingObjectDetectionwithDeepConvolutionalNetworksviaBayesianOptimizationandStructuredPrediction

FastR-CNN

DeepBox:LearningObjectnesswithConvolutionalNetworks

Objectdetectionviaamulti-region&semanticsegmentation-awareCNNmodel

FasterR-CNN:TowardsReal-TimeObjectDetectionwithRegionProposalNetworks

FasterR-CNNinMXNetwithdistributedimplementationanddataparallelization

ContextualPrimingandFeedbackforFasterR-CNN

AnImplementationofFasterRCNNwithStudyforRegionSampling

YouOnlyLookOnce:Unified,Real-TimeObjectDetection

darkflow-translatedarknettotensorflow.Loadtrainedweights,retrain/fine-tunethemusingtensorflow,exportconstantgraphdeftoC++

StartTrainingYOLOwithOurOwnData

R-CNNminusR

AttentionNet:AggregatingWeakDirectionsforAccurateObjectDetection

DenseBox:UnifyingLandmarkLocalizationwithEndtoEndObjectDetection

SSD:SingleShotMultiBoxDetector

Inside-OutsideNet:DetectingObjectsinContextwithSkipPoolingandRecurrentNeuralNetworks

AdaptiveObjectDetectionUsingAdjacencyandZoomPrediction

G-CNN:anIterativeGridBasedObjectDetector

FactorsinFinetuningDeepModelforobjectdetection

FactorsinFinetuningDeepModelforObjectDetectionwithLong-tailDistribution

Wedon’tneednobounding-boxes:Trainingobjectclassdetectorsusingonlyhumanverification

HyperNet:TowardsAccurateRegionProposalGenerationandJointObjectDetection

AMultiPathNetworkforObjectDetection

CRAFTObjectsfromImages

TrainingRegion-basedObjectDetectorswithOnlineHardExampleMining

TrackandTransfer:WatchingVideostoSimulateStrongHumanSupervisionforWeakly-SupervisedObjectDetection

ExploitAlltheLayers:FastandAccurateCNNObjectDetectorwithScaleDependentPoolingandCascadedRejectionClassifiers

R-FCN:ObjectDetectionviaRegion-basedFullyConvolutionalNetworks

Weaklysupervisedobjectdetectionusingpseudo-stronglabels

Recycledeepfeaturesforbetterobjectdetection

AUnifiedMulti-scaleDeepConvolutionalNeuralNetworkforFastObjectDetection

Multi-stageObjectDetectionwithGroupRecursiveLearning

Subcategory-awareConvolutionalNeuralNetworksforObjectProposalsandDetection

PVANET:DeepbutLightweightNeuralNetworksforReal-timeObjectDetection

PVANet:LightweightDeepNeuralNetworksforReal-timeObjectDetection

GatedBi-directionalCNNforObjectDetection

CraftingGBD-NetforObjectDetection

StuffNet:Using‘Stuff’toImproveObjectDetection

GeneralizedHaarFilterbasedDeepNetworksforReal-TimeObjectDetectioninTrafficScene

HierarchicalObjectDetectionwithDeepReinforcementLearning

Learningtodetectandlocalizemanyobjectsfromfewexamples

Speed/accuracytrade-offsformodernconvolutionalobjectdetectors

SqueezeDet:Unified,Small,LowPowerFullyConvolutionalNeuralNetworksforReal-TimeObjectDetectionforAutonomousDriving

FeaturePyramidNetworksforObjectDetection

Action-DrivenObjectDetectionwithTop-DownVisualAttentions

BeyondSkipConnections:Top-DownModulationforObjectDetection

YOLO9000:Better,Faster,Stronger

Yolo_mark:GUIformarkingboundedboxesofobjectsinimagesfortrainingYolov2

DSSD:DeconvolutionalSingleShotDetector

Wide-Residual-InceptionNetworksforReal-timeObjectDetection

AttentionalNetworkforVisualObjectDetection

LearningChainedDeepFeaturesandClassifiersforCascadeinObjectDetection

DeNet:ScalableReal-timeObjectDetectionwithDirectedSparseSampling

A-Fast-RCNN:HardPositiveGenerationviaAdversaryforObjectDetection

DiscriminativeBimodalNetworksforVisualLocalizationandDetectionwithNaturalLanguageQueries

SpatialMemoryforContextReasoninginObjectDetection

ImprovingObjectDetectionWithOneLineofCode

AccurateSingleStageDetectorUsingRecurrentRollingConvolution

DeepOcclusionReasoningforMulti-CameraMulti-TargetDetection

LearningObjectClassDetectorsfromWeaklyAnnotatedVideo

Analysingdomainshiftfactorsbetweenvideosandimagesforobjectdetection

VideoObjectRecognition

DeepLearningforSaliencyPredictioninNaturalVideo

T-CNN:TubeletswithConvolutionalNeuralNetworksforObjectDetectionfromVideos

ObjectDetectionfromVideoTubeletswithConvolutionalNeuralNetworks

ObjectDetectioninVideoswithTubeletsandMulti-contextCues

ContextMatters:RefiningObjectDetectioninVideowithRecurrentNeuralNetworks

CNNBasedObjectDetectioninLargeVideoImages

ObjectDetectioninVideoswithTubeletProposalNetworks

Flow-GuidedFeatureAggregationforVideoObjectDetection

VideoObjectDetectionusingFasterR-CNN

Vote3Deep:FastObjectDetectionin3DPointCloudsUsingEfficientConvolutionalNeuralNetworks

LearningRichFeaturesfromRGB-DImagesforObjectDetectionandSegmentation

DifferentialGeometryBoostsConvolutionalNeuralNetworksforObjectDetection

ASelf-supervisedLearningSystemforObjectDetectionusingPhysicsSimulationandMulti-viewPoseEstimation

Thistaskinvolvespredictingthesalientregionsofanimagegivenbyhumaneyefixations.

BestDeepSaliencyDetectionModels(CVPR2016&2015)

Large-scaleoptimizationofhierarchicalfeaturesforsaliencypredictioninnaturalimages

PredictingEyeFixationsusingConvolutionalNeuralNetworks

SaliencyDetectionbyMulti-ContextDeepLearning

DeepSaliency:Multi-TaskDeepNeuralNetworkModelforSalientObjectDetection

SuperCNN:ASuperpixelwiseConvolutionalNeuralNetworkforSalientObjectDetection

ShallowandDeepConvolutionalNetworksforSaliencyPrediction

RecurrentAttentionalNetworksforSaliencyDetection

Two-StreamConvolutionalNetworksforDynamicSaliencyPrediction

UnconstrainedSalientObjectDetection

UnconstrainedSalientObjectDetectionviaProposalSubsetOptimization

DHSNet:DeepHierarchicalSaliencyNetworkforSalientObjectDetection

SalientObjectSubitizing

Deeply-SupervisedRecurrentConvolutionalNeuralNetworkforSaliencyDetection

SaliencyDetectionviaCombiningRegion-LevelandPixel-LevelPredictionswithCNNs

EdgePreservingandMulti-ScaleContextualNeuralNetworkforSalientObjectDetection

ADeepMulti-LevelNetworkforSaliencyPrediction

VisualSaliencyDetectionBasedonMultiscaleDeepCNNFeatures

ADeepSpatialContextualLong-termRecurrentConvolutionalNetworkforSaliencyDetection

Deeplysupervisedsalientobjectdetectionwithshortconnections

WeaklySupervisedTop-downSalientObjectDetection

SalGAN:VisualSaliencyPredictionwithGenerativeAdversarialNetworks

VisualSaliencyPredictionUsingaMixtureofDeepNeuralNetworks

AFastandCompactSalientScoreRegressionNetworkBasedonFullyConvolutionalNetwork

SaliencyDetectionbyForwardandBackwardCuesinDeep-CNNs

SupervisedAdversarialNetworksforImageSaliencyDetection

DeepLearningForVideoSaliencyDetection

VisualRelationshipDetectionwithLanguagePriors

ViP-CNN:AVisualPhraseReasoningConvolutionalNeuralNetworkforVisualRelationshipDetection

VisualTranslationEmbeddingNetworkforVisualRelationDetection

DeepVariation-structuredReinforcementLearningforVisualRelationshipandAttributeDetection

DetectingVisualRelationshipswithDeepRelationalNetworks

Multi-viewFaceDetectionUsingDeepConvolutionalNeuralNetworks

FromFacialPartsResponsestoFaceDetection:ADeepLearningApproach

CompactConvolutionalNeuralNetworkCascadeforFaceDetection

FaceDetectionwithEnd-to-EndIntegrationofaConvNetanda3DModel

CMS-RCNN:ContextualMulti-ScaleRegion-basedCNNforUnconstrainedFaceDetection

FindingTinyFaces

TowardsaDeepLearningFrameworkforUnconstrainedFaceDetection

SupervisedTransformerNetworkforEfficientFaceDetection

UnitBox:AnAdvancedObjectDetectionNetwork

BootstrappingFaceDetectionwithHardNegativeExamples

GridLoss:DetectingOccludedFaces

AMulti-ScaleCascadeFullyConvolutionalNetworkFaceDetector

JointFaceDetectionandAlignmentusingMulti-taskCascadedConvolutionalNetworks

JointFaceDetectionandAlignmentusingMulti-taskCascadedConvolutionalNeuralNetworks

FaceDetectionusingDeepLearning:AnImprovedFasterRCNNApproach

Faceness-Net:FaceDetectionthroughDeepFacialPartResponses

Multi-PathRegion-BasedConvolutionalNeuralNetworkforAccurateDetectionofUnconstrained“HardFaces”

End-To-EndFaceDetectionandRecognition

DeepConvolutionalNetworkCascadeforFacialPointDetection

FacialLandmarkDetectionbyDeepMulti-taskLearning

ARecurrentEncoder-DecoderNetworkforSequentialFaceAlignment

Detectingfaciallandmarksinthevideobasedonahybridframework

DeepConstrainedLocalModelsforFacialLandmarkDetection

Effectivefacelandmarklocalizationviasingledeepnetwork

AConvolutionTreewithDeconvolutionBranches:ExploitingGeometricRelationshipsforSingleShotKeypointDetection

End-to-endpeopledetectionincrowdedscenes

DetectingPeopleinArtworkwithCNNs

DeepMulti-cameraPeopleDetection

Context-awareCNNsforpersonheaddetection

PedestrianDetectionaidedbyDeepLearningSemanticTasks

DeepLearningStrongPartsforPedestrianDetection

Deepconvolutionalneuralnetworksforpedestriandetection

Scale-awareFastR-CNNforPedestrianDetection

Newalgorithmimprovesspeedandaccuracyofpedestriandetection

PushingtheLimitsofDeepCNNsforPedestrianDetection

AReal-TimeDeepLearningPedestrianDetectorforRobotNavigation

AReal-TimePedestrianDetectorusingDeepLearningforHuman-AwareNavigation

IsFasterR-CNNDoingWellforPedestrianDetection

ReducedMemoryRegionBasedDeepConvolutionalNeuralNetworkDetection

FusedDNN:Adeepneuralnetworkfusionapproachtofastandrobustpedestriandetection

MultispectralDeepNeuralNetworksforPedestrianDetection

ExpectingtheUnexpected:TrainingDetectorsforUnusualPedestrianswithAdversarialImposters

DAVE:AUnifiedFrameworkforFastVehicleDetectionandAnnotation

EvolvingBoxesforfastVehicleDetection

Traffic-SignDetectionandClassificationintheWild

Holistically-NestedEdgeDetection

UnsupervisedLearningofEdges

PushingtheBoundariesofBoundaryDetectionusingDeepLearning

ConvolutionalOrientedBoundaries

ConvolutionalOrientedBoundaries:FromImageSegmentationtoHigh-LevelTasks

RicherConvolutionalFeaturesforEdgeDetection

ObjectSkeletonExtractioninNaturalImagesbyFusingScale-associatedDeepSideOutputs

DeepSkeleton:LearningMulti-taskScale-associatedDeepSideOutputsforObjectSkeletonExtractioninNaturalImages

SRN:Side-outputResidualNetworkforObjectSymmetryDetectionintheWild

DeepFruitDetectioninOrchards

ImageSegmentationforFruitDetectionandYieldEstimationinAppleOrchards

Objectsascontextforpartdetection

DeepDeformationNetworkforObjectLandmarkLocalization

FashionLandmarkDetectionintheWild

DeepLearningforFastandAccurateFashionItemDetection

OSMDeepOD-OSMandDeepLearningbasedObjectDetectionfromAerialImagery(formerlyknownas“OSM-Crosswalk-Detection”)

SelfieDetectionbySynergy-ConstraintBasedConvolutionalNeuralNetwork

AssociativeEmbedding:End-to-EndLearningforJointDetectionandGrouping

DeepCuboidDetection:Beyond2DBoundingBoxes

AutomaticModelBasedDatasetGenerationforFastandAccurateCropandWeedsDetection

DeepLearningLogoDetectionwithDataExpansionbySynthesisingContext

Pixel-wiseEarDetectionwithConvolutionalEncoder-DecoderNetworks

AutomaticHandgunDetectionAlarminVideosUsingDeepLearning

DeepProposal:HuntingObjectsbyCascadingDeepConvolutionalLayers

Scale-awarePixel-wiseObjectProposalNetworks

AttendRefineRepeat:ActiveBoxProposalGenerationviaIn-OutLocalization

LearningtoSegmentObjectProposalsviaRecursiveNeuralNetworks

LearningDetectionwithDiverseProposals

ScaleNet:GuidingObjectProposalGenerationinSupermarketsandBeyond

ImprovingSmallObjectProposalsforCompanyLogoDetection

BeyondBoundingBoxes:PreciseLocalizationofObjectsinImages

WeaklySupervisedObjectLocalizationwithMulti-foldMultipleInstanceLearning

WeaklySupervisedObjectLocalizationUsingSizeEstimates

ActiveObjectLocalizationwithDeepReinforcementLearning

Localizingobjectsusingreferringexpressions

LocNet:ImprovingLocalizationAccuracyforObjectDetection

LearningDeepFeaturesforDiscriminativeLocalization

ContextLocNet:Context-AwareDeepNetworkModelsforWeaklySupervisedLocalization

ConvolutionalFeatureMaps:Elementsofefficient(andaccurate)CNN-basedobjectdetection

TowardsGoodPracticesforRecognition&Detection

TensorBox:asimpleframeworkfortrainingneuralnetworkstodetectobjectsinimages

Objectdetectionintorch:Implementationofsomeobjectdetectionframeworksintorch

UsingDIGITStotrainanObjectDetectionnetwork

FCN-MultiBoxDetector

KittiBox:AcardetectionmodelimplementedinTensorflow.

BeaverDam:Videoannotationtoolfordeeplearningtraininglabels

ConvolutionalNeuralNetworksforObjectDetection

Introducingautomaticobjectdetectiontovisualsearch(Pinterest)

DeepLearningforObjectDetectionwithDIGITS

AnalyzingThePapersBehindFacebook’sComputerVisionApproach

EasilyCreateHighQualityObjectDetectorswithDeepLearning

HowtoTrainaDeep-LearnedObjectDetectionModelintheMicrosoftCognitiveToolkit

ObjectDetectioninSatelliteImagery,aLowOverheadApproach

YouOnlyLookTwice—Multi-ScaleObjectDetectioninSatelliteImageryWithConvolutionalNeuralNetworks

FasterR-CNNPedestrianandCarDetection

SmallU-Netforvehicledetection

Regionofinterestpoolingexplained

DeepLearning(深度学习):

MachineLearning(机器学习):

国外技术团队博客:

ComputerVision(计算机视觉):

2012年7月4日随着opencv2.4.2版本的发布,opencv更改了其最新的官方网站地址。

好像12年才有这个论坛的,比较新。里面有针对《learningopencv》这本书的视频讲解,不过视频教学还没出完,正在更新中。对刚入门学习opencv的人来说很不错。

opencv中文论坛,对于初次接触opencv的学者来说比较不错,入门资料多,opencv的各种英文文档也翻译成中文了。不足是感觉这个论坛上发帖提问很少人回答,也就是说讨论不够激烈。

opencv的日文网站,里面有不少例子代码,看不懂日文可以用网站自带的翻译,能看个大概。

opencv版本发布地方。

opencv版本内容更改日志网页,前面那个网页更新最快。

opencv中文教程网页,分几个模块讲解,有代码有过程。内容是网友翻译opencv自带的doc文件里的。

网友总结的常用带有cvpr领域常见算法code链接的网址,感觉非常的不错。

该网站可以查看opencv中一些函数的变量接口,还会列出函数之间的结构图。

opencv的函数、类等查找网页,有导航,查起来感觉不错。

优化:

数学:

《计算机中的数学》系列视频,8位老师10讲内容,生动介绍微积分和线性代数基本概念在计算机学科中的各种有趣应用!

Linux学习资料:

网友晨宇思远的博客,主攻cvpr,ai等。

kinect和openni学习资料汇总。

OpenCV计算机视觉kinect的博客:

体感游戏中文网,有不少新的kinect资讯。

Kinect体感开发网。

openni_hand_trackinggooglecode项目。

kinect新的库,可以结合OpenNI使用。

kinect手势识别网站。

kinect2012年度最具创新的6个项目,有视频,确实够创新的!

kinect多点触控的一篇博文。

有关matlabforkinect的一些接口。

AIR和Kinect的结合,有一些手指跟踪的code。

研究kinect手势识别的,任洲。刚毕业不久。

其他网友cvpr领域的链接总结:

网友整理常用牛人链接总结,非常多。不过个人没有没有每个网站都去试过。所以本文也是我自己总结自己曾经用过的或体会过的。

OpenGL有关:

NeHe的OpenGL教程英文版。

NeHe的OpenGL教程对应的中文版,由网友周玮翻译的。

NeHe的OpengGL对应的Qt版中文教程。

网友"左脑设计,右脑编程"的Qt_OpenGL博客,写得还不错。

这个博客对opengl的机制有所剖析,貌似要FQ才能进去。

cvpr综合网站论坛博客等:

中国计算机视觉论坛

这个博客很不错,每次看完都能让人兴奋,因为有很多关于cv领域的科技新闻,还时不时有视频显示。另外这个博客里面的资源也整理得相当不错。中文的。

一位网友的个人计算机视觉博客,有很多关于计算机视觉前沿的东西介绍,与上面的博客一样,看了也能让人兴奋。

牛人博客,主攻数据结构,机器学习数据挖掘算法等。

该网友上面有一些计算机视觉方向的博客,博客中附有一些实验的测试代码.

做网络和自然语言处理的,有不少机器学习方面的介绍。

ML常用博客资料等:

里面包含学ML/DM所需要的一些知识链接,且有些给出了视频教程,网页资料,电子书,开源code等,推荐!

里面有一些常见机器学习算法的详细推导过程。

无垠天空的机器学习博客。

机器学习挑战赛。

licstar的技术博客,偏自然语言处理方向。

国内科研团队和牛人网页:

李子青教授个人主页,中科院自动化所cvpr领域牛叉人!

香港理工大学教授leizhang个人主页,也是cvpr领域一大牛人啊,cvpr,iccv各种发表。更重要的是他所以牛叉论文的code全部公开,非常难得!

中法信息、自动化与应用联合实验室,里面很多内容不仅限而cvpr,还有ai领域一些其他的研究。

厦门大学特聘教授,cv领域一位牛人。研究方向主要为目标检测,目标跟踪,运动估计,三维重建,鲁棒统计学,光流计算等。

北京大学数字视频编码技术国家实验室。

libsvm项目网址,台湾大学的,很火!

山世光,人脸识别研究比较牛。在中国科学院智能信息处理重点实验室

国外科研团队和牛人网页:

国外学者整理的各高校研究所团队网站

微软视觉研究小组,不解释,大家懂的,牛!

法国国家信息与自动化研究所,有对应牛人的链接,论文项目网页链接,且一些code对应链接等。

Learningtorecognizeobjectswithlittlesupervision该篇论文的项目网页,有对应的code下载,另附有详细说明。

卡耐基梅隆大学计算机视觉主页,内容非常多。可惜的是该网站内容只更新到了2004年。

斯坦福大学计算机视觉主页,里面有非常非常多的牛人,比如说大家熟悉的lifeifei.

关于wavelet研究的网页。

加州大学洛杉矶分校统计学院,关于统计学习方面各种资料,且有相应的网上公开课。

卡耐基梅隆大学Alexei(Alyosha)Efros教授个人网站,计算机图形学高手。

mit牛人Associate教授个人网址,主要研究计算机视觉人体视觉感知,目标识别和场景理解等。

mit牛人WilliamT.Freeman教授,主要研究计算机视觉和图像学

IBM人体视觉研究中心,里面除了有其研究小组的最新成果外,还有很多测试数据(特别是视频)供下载。

vlfeat主页,vlfeat也是一个开源组织,主要定位在一些最流行的视觉算法开源上,C编写,其很多算法效果比opencv要好,不过数量不全,但是非常有用。

AndrewZisserman的个人主页,这人大家应该熟悉,《计算机视觉中的多视几何》这本神书的作者之一。

KristenGrauman教授的个人主页,是个大美女,且是2011年“马尔奖”获得者,”马尔奖“大家都懂的,计算机视觉领域的最高奖项,目前无一个国内学者获得过。她的主要研究方法是视觉识别。

mit视觉实验室主页。

曾经在网络上非常出名一个视频,一个作者研究的第六感装置,现在这个就是其开源的主页。

PiotrDollar的个人主要,主要研究方向是人体行为识别。

移动多媒体处理,将移动设备,计算机图像学,视觉,图像处理等结合的领域。

IvanLaptev牛人主页,主要研究人体行为识别。有很多数据库可以下载。

RobHess的个人主要,里面有源码下载,比如说粒子滤波,他写的粒子滤波在网上很火。

cvpr领域一些小型的开源代码。

做行人检测的一个团队,内部有一些行人检测的代码下载。

visualgeometrygroup

图像:

交互式图像分割代码。

graphcut优化代码。

语音:

语音处理中的kaldi学习。

算法分析与设计(计算机领域的基础算法):

一些综合topic列表:

ConsumerDepthCamerasforComputerVision

很优秀的一本书,不过很贵,买不起啊!做深度信息的使用这本书还不错,google图中可以预览一部分。

Making.Things.See

中国机器学习及应用研讨会(这个是2013年的)

期刊会议论文下载:

几个顶级会议论文公开下载界面,比如说ICCV,CVPR,ECCV,ACCV,ICPR,SIGGRAPH等。

cvpr2012的官方地址,里面有各种资料和信息,其他年份的地址类似推理更改即可。

ICV期刊下载

TPAMI期刊,AI领域中可以算得上是最顶级的期刊了,里面有不少cvpr方面的内容。

IJCV的网址。

NIPS官网,有论文下载列表。

LSRS(会议)地址,大规模推荐系统,其它年份依次类推。

上面网页的一个子网页,列出了最近的CV领域提交paper的deadline。

微软研究院牛人WallflowerPaper的论文中用到的目标检测等测试图片

UCI数据库列表下载,最常用的机器学习数据库列表。

人体行为识别通过关键点的跟踪视频数据库,Rochesteruniversity的

IBM人体视觉研究中心,有视频监控等非常多的测试视频。

该网站上列出了常见的cvpr研究的数据库。

RGB-DObjectDataset.做目标识别的。

该网站很好玩,可以测试你心里想出的一个人名(当然前提是这个人必须有一定的知名度),然后该网站会提出一系列的问题,你可以选择yesorno,orIdon’tknow等等,最后系统会显示你心中所想的那个人。

人与狗的匹配游戏,摄像头采集人脸,呵呵…

该网站上有一些android图标,菜单等跟界面有关的设计工具,可以用来做一些简单的UI设计.

工具和code下载:

6种常见的图像特征点检测子,linux下环境运行。不过只提供了二进制文件,不提供源码。

仿射无关尺度特征点检测算子源码,还有些其它算子的源码或二进制文件。

隐式形状模型(ISM)项目主页,作者BastianLeibe提供了linux下运行的二进制文件。

IvanLaptev牛人主页中的STIP特征点检测code,但是也只是有二进制文件,无源码。该特征点在行为识别中该特征点非常有名。

THE END
1.LearningAZGlobal亚洲Learning AZ Global 亚洲You Might Also Like Cubo Education Art at GVSU Education Toddle Student China Education Let's Smile 6 Education F&P FPC Reading Record Apps amRhino Educationhttps://apps.apple.com/cn/app/learning-az-global-%E4%BA%9A%E6%B4%B2/id1498069428?l=en&see-all=customers-also-bought-apps
2.NetworkingMicrosoftLearnaz dnc ? ? ?. ? az internet-analyzer ? ?. GA az network Azure ?. https://learn.microsoft.com/ko-kr/cli/azure/service-page/networking
3.LatestAWSCertifiedCloudPass your test with our latest AWS-Certified-Cloud-Practitioner Korean testking torrent. You just need to take 20-30 hours for preparation, then you can confident to attend the AWS-Certified-Cloud-Practitioner Korean actual test. Instantly download our Ahttp://testking.suretorrent.com/CLF-C01-KR-pass-exam-training.html
4.MachineLearningSubjects: Machine Learning (cs.LG); Computer Vision and Pattern Recognition (cs.CV) [610] arXiv:2412.10354 [pdf, html, other] A Library for Learning Neural Operators Jean Kossaifi, Nikola Kovachki, Zongyi Li, David Pitt, Miguel Liu-Schiaffini, Robert Joseph George, Boris Bonev, Kamyarhttp://arxiv.org/list/cs.LG/recent?skip=608&show=931
5.LoggingIn–AcceleratedReaderHow students log in How teachers, administrators, and staff log in How Students Log In Note: To see student user names and passwords, onhttps://help2.renaissance.com/setup/LoggingIn
6.AIAssistantforCourseContentand·LobeChatThis AI assistant is designed to help educators and instructors prepare comprehensive course content and provide practical teaching guidelines. It leverages advanced NLP capabilities to generate lesson plans, suggest engaging teaching strategies, and offer insights into educational best practices. https://chat.oxcafebabe.cn/discover/assistant/course-prep-teaching-guide-ai
7.incrementalA collection of incremental learning paper implementations including PODNet (ECCV20) and Ghost (CVPR-W21).点赞(0) 踩踩(0) 反馈 访问所需:1 积分 电信网络下载 访问申明(访问视为同意此申明) 1.在网站平台的任何操作视为已阅读和同意网站底部的版权及免责申明 2.部分网络用户分享TXT文件内容为网盘地址https://python.code.coder100.com/index/index/content/id/60905
8.AnnouncingGenAIIndexinAmazonKendraAmazon Kendra is an AI-powered search service enabling organizations to build intelligent search experiences and retrieval augmented generation (RAG) systems to power generative AI applications. Starting today, AWS customers can use a new index - the GenAI Index for RAG and intelligent search. With http://aws.amazon.com/cn/about-aws/whats-new/2024/12/genai-index-amazon-kendra/
9.讲义这里是不是错了有问必答品职教育,以CFA ESG FRM CPA 考研证书培训为主线任务,围绕着财经职业培训,拓展出金融行业相关的实务类课程,让坚持学习更容易https://www.pzacademy.com/qa/185661
10.一个寒假时间,如何靠这些网站战胜Alevel&IGCSE?考试局官网 1.各类考试局官网 CIE考试 爱德思考试局 AQA考试局 OCR考试局 OCR MEI考试局 OXFORD AQA考试局 2.S-cool 这个网站包括了英国本土A Level和GCSE的文字版课程讲解资料,内容细致,有图表分析。 尽管不分考试局,但基本涵盖了学生的热门选择科目,可以同时作为英国本土考生以及国际考生的课程内容参考。如果购买https://zhuanlan.zhihu.com/p/11553419722
11.节卡机器人入选工信部2024年度智能制造系统解决方案“揭榜挂帅入选的柔性智能螺钉锁付工作站,是“JAKA 产品级应用”之一。J 近日,中华人民共和国工业和信息化部门公布了2024年度智能制造系统解决方案“揭榜挂帅”项目名单,遴选了一批先进适用、自主可控、可复制推广的系统解决方案。节卡机器人推出的“面向车灯柔性制造的新型螺丝锁付解决方案”成功入选。 https://www.industrysourcing.cn/article/464070
12.Education.com#1EducationalSiteforPreGet a learning boost with thousands of worksheets, games, lesson plans, and more from our library of printable and digital resources for preschool, kindergarten, and elementary learners.http://education.com/
13.CommonCoreStateStandardsInitiative–PreparingAmerica'sDisclaimer:On this page you can find the Common Core State Standards in Mathematics and English Language Arts. The standards are temporarily located on this page while we work to address technical challenges with CoreStandards.org. Thank you for your patience and we will share an update on Corehttps://www.corestandards.org/
14.ThunderbirdSchoolofGlobalManagementExecutive Education Alumni and giving Support from alumni makes Thunderbird possible. The School leverages the resources and talent of our alumni to guide, advocate and support the achievement of our collective mission. Learn more Lifelong learning https://online.thunderbird.edu/
15.RazOnline guided reading program with interactive ebooks, downloadable books, and reading quizzes.https://www.raz-kids.com/
16.MLlibApacheSparkMLlib is Apache Spark's scalable machine learning library, with APIs in Java, Scala, Python, and R.https://spark.apache.org/mllib/
17.GrandCanyonNationalPark(U.S.NationalParkService)Walking, hiking, bicycling, touring, stargazing, rail adventures, mule trips, guided learning —orPO Box 129 Grand Canyon, AZ 86023 Phone: 928-638-7779 Contact Us Tools FAQ Site Indexhttps://www.nps.gov/grca/index.htm
18.JournalofMachineLearningResearchIskander Azangulov, Andrei Smolensky, Alexander Terenin, Viacheslav Borovitskiy, 2024. [abs][pdf][bib] [code] On Doubly Robust Inference for Double Machine Learning in Semiparametric Regression Oliver Dukes, Stijn Vansteelandt, David Whitney, 2024. [abs][pdf][bib] [code] Deephttps://jmlr.csail.mit.edu/
19.FeedMeMoaz手游FeedMeMoaz安卓预约下载最新手机正版链接豌豆荚FeedMeMoaz手游下载官网为玩家们提供FeedMeMoaz安卓正版预约下载链接,抢先体验2024最新FeedMeMoaz手机版体验服、测试服、正式服等版本玩法,想要预约FeedMeMoaz下载就到豌豆荚官网。https://www.wandoujia.com/download/295224/
20.LearningxDSxDS学习笔记Zone 分区 AWS中的Availability Zone (AZ), GCP中的Zone Sub-zone 子分区 Envoy实例或端点在分区内运行的位置。这允许在分区内存在多个负载均衡目标。 术语的中文翻译 envoy和xds的术语在翻译中文时,为了保持一致,建议遵循envoy文档翻译小组的约定: https://github.com/cloudnativeto/envoy/blob/zh/docs/root/termhttps://skyao.io/learning-xds/docs/_print.html
21.LanguageLearning期刊UPSHUR, JA;ACTON, W;ARTHUR, B;GUIORA, AZ 99-104 INTRODUCTORY COURSE IN READING FRENCH BURLING, R 105-128 EFFECT OF AFFECT ON FOREIGN-LANGUAGE LEARNING - REVIEW OF THE ANXIETY RESEARCH SCOVEL, T 129-142 IMPROVEMENT OF FOREIGN-LANGUAGE PRONUNCIATION UNDER HYPNOSIS - PRELIMINARY-STUDY SChttps://cqvip.com/journal/16864/2570023
22.adaptivelearningforenglishvocabularyWe have fun, they are learning, and in turn their writing is enhanced with the new vocabulary they have been practicing. Everyone benefits from this well-rounded digital learning program. Elementary school language arts teacher Pearce, AZ https://www.vocabulary.com/
23.StudentPasswordKidsAHey, Kids: To access your Raz-Kids page, go to the web page for your class and click on the symbol above your name. It's that easy!https://www.kidsa-z.com/
24.arizonavirtualacademy(azva)Arizona Virtual Academy (AZVA) is a tuition-free virtual public school serving students in grades K-12. Learn more and enroll today!https://azva.k12.com/
25.Auth0:Secureaccessforeveryone.Butnotjustanyone.Rapidly integrate authentication and authorization for web, mobile, and legacy applications so you can focus on your core business.https://auth0.com/
26.GettingstartedLess.jsBecause Less looks just like CSS, learning it is a breeze. Less only makes a few convenient additions to the CSS language, which is one of the reasons it can be learned so quickly. For detailed documentation on Less language features, see Features For a list of Less Built-in functions, http://www.lesscss.org/
27.OnlineDegreeandCertificateProgramsCaliforniaSouthernCalSouthern is a member of the American InterContinental University System. The System is accredited by the Higher Learning Commission (hlcommisson.org). Many of our programs are accredited by other bodies such as ACBSP and CCNE. Experienced Faculty https://www.calsouthern.edu/
28.CYT2B97CACQ0AZSGSSales Product Name CYT2B97CACQ0AZSGS OPN Info CYT2B97CACQ0AZSGS Product Status active and preferred Infineon Package name PG-LQFP-144 StandardAnCyR’s anomaly detection technology combines statistical, probabilistic, and machine learning algorithms to achttps://www.infineon.com/cms/cn/product/microcontroller/32-bit-traveo-t2g-arm-cortex-microcontroller/32-bit-traveo-t2g-arm-cortex-for-body/traveo-t2g-cyt2b9-series/cyt2b97cacq0azsgs/
29.ilearning华为官方下载客户端官网:暂无 ilearning华为内部版本提供了线上考试功能,用户可以通过考试来检验自己的学习成果,考试内容紧扣课程主题,有助于用户巩固所学知识,并为实际工作中的应用做好准备,平台支持直播课程,用户可以实时参与,与讲师和其他学员进行互动。 官方说明 华为ilearning是一款面向华为员工的软件,有着丰富的网络课程资源,涵盖了华https://www.fxxz.com/azsoft/710794.html
30.?LearningStory家长版下载分类:学习教育 大小:7.4M 语言:中文 版本:v1.4.5 安卓版 时间:2021-09-11 15:55 星级: 官网:https://www.hzdstlj.com/ 厂商:浙江向亮科技有限公司 平台:Android 标签:家长助手孩子在园情况一目了然。应用截图应用介绍 LearningStory(家长端),是杭州西湖风景名胜区龙井幼儿园为家长们打造的手机客户端,帮助https://www.qqtn.com/azsoft/715864.html
31.TheScienceofConsciousnessConferenceCloser to Truth, DDG, IONS, ISF, Neuroelectrics, PuzzleX, Sanmei, SEMA Lab, Starlab, The Festival of Consciousness, Barcelona Institute for Advanced Neuroscience, Tiny Blue Dot Foundation, UA-AZ Astrobiology Center, UA-Center for Consciousness Studies Executive Committee 2025: updating Stuart Hamerhttps://consciousness.arizona.edu/
32.mlflowmachinelearningexperimentsDescription will go into a meta tag in https://www.mlflow.org/
33.机器学习深度学习教程faast再就是DeepLearning的官网,里面好的好东西自己发现: http://deeplearning.net/ 关于学习深度学习工具,似乎也有好多(matlab版,c++版,Python版等等深度学习库),视你自己熟悉而定。比如一个比较适合初学者学习原理的matlab版工具箱: DeepLearnToolbox (后面会基于这个工具箱进行相关实验)。 https://blog.csdn.net/weixin_43887873/article/details/105240731