自然语言强化学习:一个可处理语言反馈的强化学习框架数学推理

在人工智能发展史上,强化学习(RL)凭借其严谨的数学框架解决了众多复杂的决策问题,从围棋、国际象棋到机器人控制等领域都取得了突破性进展。然而,随着应用场景日益复杂,传统强化学习过度依赖单一数值奖励的局限性日益凸显。在现实世界中,反馈信号往往是多维度、多模态的,例如教练的口头指导、视觉示范,或是详细的文字说明。近日,来自伦敦大学学院、上海交通大学、布朗大学、新加坡国立大学和布里斯托大学的联合研究团队提出了全新的自然语言强化学习(NaturalLanguageReinforcementLearning,NLRL)范式,成功将强化学习的核心概念类比为基于自然语言的形式,开辟了一条通向更智能、更自然的AI决策学习的新道路。

关键词:人工智能,强化学习,自然语言强化学习

从数值到语言:新范式的萌芽

这种困境促使研究团队开始探索一个更具突破性的方向:能否设计一个框架,让AI系统完全通过与环境的交互来学习,而不依赖任何人类标注数据?传统强化学习为这个问题提供了灵感,但其单一数值奖励的机制难以满足复杂场景的需求。团队意识到需要一个新范式,既要继承强化学习的数学严谨性,又要具备自然语言的表达丰富性。这个思路最终导向了NLRL的诞生。

自然语言强化学习

传统强化学习虽然在数学上严谨优雅,但其单一数值反馈机制与人类学习方式存在巨大差距。研究团队从象棋教练指导学生的场景获得启发:教练不会简单说“这步棋的价值是0.7”,而是会详细解释“这个走法控制了中心,限制了对手的机动性,同时为王翼进攻创造了条件”。这种观察促使团队思考:能否将丰富的语言反馈信号整合进学习框架?

这个思路的关键突破来自对传统强化学习本质的重新思考:既然传统RL可以通过蒙特卡洛和时序差分等方法进行学习,这些方法是否可以扩展到语言空间?基于这一洞察,团队提出了NLRL框架,将传统RL中的数学概念类比为语言形式。以下是一个对应关系示意图。

具体而言,NLRL引入“语言任务指令”(T_L)替代抽象的奖励函数,并设计了度量函数F来评估轨迹描述D_L(τ_π)与任务指令的完成度。

语言化的决策框架

在NLRL中,MDP的每个组成部分都被重新定义为文本形式。状态变为包含完整上下文的自然语言描述,动作空间转化为带有推理过程的语言决策,而环境反馈则扩展为包含原因分析的详细评估。例如,在迷宫环境中的状态描述会包含位置、周围环境、历史探索等完整信息。

语言策略与推理

NLRL中的策略π_L被创新性地分解为两个部分:π_L(a,c|s)=π_L(c|s)π_L(a|c,s),其中c代表思维过程。这种分解使得决策过程变得完全透明。以国际象棋为例,系统会先分析局势(“白方控制中心点,黑方王翼薄弱”),提出计划(“开展王翼进攻,同时固守中心”),最后给出具体建议(“Nf3-e5,威胁f7并加强中心控制”)。

语言价值评估

NLRL将传统的标量值函数V(s)和Q(s,a)扩展为语言价值函数V^L_π和Q^L_π。这种扩展使得评估变得更加丰富和可解释。评估结果不仅包含胜率,还涵盖空间利用、子力配合等多个角度的分析,并提供具体的改进建议。

从理论到实践

基于这一洞察,研究团队提出了三个关键技术创新,构建了完整的NLRL实现框架:

语言蒙特卡洛估计

在传统强化学习中,蒙特卡洛方法通过采样多条轨迹并取平均值来估计状态价值。但在语言空间中,我们无法直接对文本描述进行算术平均。研究团队利用大语言模型作为信息聚合器(aggregator)。

具体来说,当系统需要评估某个状态时,它会:

1.从该状态开始采样K条完整轨迹

2.将每条轨迹转化为详细的文本描述

3.使用专门设计的提示让LLM扮演“专家评估员”的角色

4.LLM分析所有轨迹描述,提取关键模式和见解

5.生成一个综合性的评估报告

例如,在国际象棋中,系统可能会分析说:“基于观察到的20个可能发展,此位置对白方有利。在80%的变化中,白方能够通过控制中心格和针对f7的战术威胁获得优势。但需要注意的是,如果黑方成功完成王翼城堡,局势可能趋于平衡。”

语言时序差分学习

传统的时序差分学习基于贝尔曼方程,将长期价值分解为即时奖励和未来状态的折扣价值。NLRL创新性地提出了语言贝尔曼方程,将这种时序关系扩展到语言空间。

在NLRL中,语言时序差分学习包含三个关键组件:

1.文本描述生成器d:将状态转换(s,a,r,s')转化为自然语言描述

3.语言组合函数G2:将即时反馈与未来评估结合

这三个组件协同工作的方式如下:

在实践中,这种方法表现出了独特的优势:

语言策略提升

这种提升机制的工作原理是:

1.对当前状态收集多个候选动作

2.获取每个动作的语言价值评估

4.生成改进的决策链路,包括:

例如,在迷宫导航任务中,系统可能会这样分析:“向右移动是最优选择,因为:1)根据之前的探索经验,右侧路径更可能通向目标2)即使这条路不是最短路径,也为我们保留了回退的选项3)相比向上移动可能遇到的死胡同,这个选择风险更小。”

实验验证

研究团队在三个具有代表性的环境中系统地验证了NLRL的效果。这些实验不仅展示了NLRL的性能优势,更重要的是证明了该框架在不同类型任务中的普适性和可扩展性。

迷宫导航-基于prompt的自然语言策略迭代

在复杂的迷宫导航任务中,研究团队测试了纯基于prompt的自然语言策略迭代算法。研究团队选择了两种具有挑战性的迷宫环境进行测试:双T型迷宫和中等复杂度迷宫。在这些环境中,智能体需要从随机初始位置导航到目标位置,同时避免撞墙。通过语言TD估计,在双T型迷宫中实现了-11.19±2.86的平均奖励,远优于基线方法的-27.29±4.43。但NLRL真正的优势不仅仅体现在数字上。系统能够清晰地解释每个决策的原因,例如:“选择向南移动,因为:1)北边是死胡同,我们之前已经探索过2)南向路径似乎更接近目标位置3)即使这条路不是最优解,我们仍保留了向东撤退的选项。”实验还发现,增加变化数量和前瞻步数能进一步提升性能。

突破棋(Breakthrough)-自然语言价值函数

在5x5突破棋(状态空间达108)这个几乎没有人类数据的任务中,NLRL纯依靠环境反馈训练出了高质量的语言评估器。通过混合不同水平的MCTS策略数据构建训练集,评估器达到了0.85的准确率,显著超越LLAMA-3.1-70b的0.61以及GPT-4o的0.58。更重要的是,这个评估器能提供专业级别的局势分析。例如:“黑方略占优势,原因有三:1)在d4和e4形成了稳固的双兵链2)白方右翼的兵形成了薄弱点3)黑方的推进速度比白方快半步。建议白方通过c3-c4来争夺中心控制权。”

井字棋-自然语言Actor-Critic

在井字棋环境中,团队实现了完整的语言Actor-Critic系统。通过动作选择掩码防止幻觉、经验缓冲区解决遗忘问题、持续的迭代优化等创新,系统在随机对手下实现90%以上胜率,面对确定性策略甚至能保持100%的胜率,同时保持决策过程的清晰可解释性。

本论文由伦敦大学学院、上海交通大学、布朗大学、布里斯托大学、新加坡国立大学以及萨里大学的研究者合作完成。冯熙栋是论文第一作者,即将毕业于伦敦大学学院。目前是GoogleDeepMind的ResearchScientist,主要研究方向包括强化学习与生成模型。刘博是本推文作者,新加坡国立大学二年级博士生,研究强化学习、推理及机器学习系统在复杂现实环境中的应用。

THE END
1.OnlineContinualLearninginImageClassification:AnYeongdeungpo-gu, Seoul, South Korea ehwkim@lgresearch.ai Abstract Online continual learning for image classification studies the problem of learning to classify images from an online stream of data and tasks, where tasks may include new classes (class incremental) or data nonstationarity (domain incrhttp://arxiv.org/pdf/2101.10423
2.BackpropagationerrorfunctionlandscapeOnlinelearning is used for dynamic environments that provide a continuous stream of new training data patterns.Offlinelearning makes use of a training set of static patterns. Limitations[edit] Gradient descent can find the local minimum instead of the global minimum https://blog.csdn.net/omnispace/article/details/54754707
3.北森控股:2023/2024環境社會及管治報告orspecialcapabilityimprovementforemployees,etc.線上視頻學習線上分享學習OnlineVideoLearningOnlineSharingLearningOfflineFull-timeLearning線下脫產學習keycompetenciesleapfroggingoccupationalskillsoperationmanagementprofessionalskillsmanagementskillsprocessmanagement關鍵能力跨越職業力業務管理專業力管理技能流程管理職業健康與安全保障http://bw.fygsoft.com/repinfodetail_3437493.html
4.LearningManagementSystem:ADefinitiveGuideworking in an online environment will begin to question their decisions if they are left to struggle without training or support.Learning management will help the administrator personalize the learning environment. A good LMS should also have offline learning data via offline data capture processeshttp://www.sweetprocess.com/learning-management-system/
5.OracleThis problem can easily be cast in our oracle-efficient online learning framework. The learner's action space is the set of target auctions A, while the adversary's action space is the set of bid or valuation vectors Vn. The offline oracle is a revenue maximization oracle which computes anhttps://www.cs.cornell.edu/~nika/pubs/main-oracle-efficient.pdf?ref=hackernoon.com
6.英语讨论I think that online learning has both advantages and disadvantages, so let me share my opinion. The benefits of online learning are many. First of all, online learing have rich learning resources. In the era of network resource sharing, whether it is free or paid courses, you can always fihttps://www.jianshu.com/p/cf67e95b05c2
7.Machinelearningonmobile:onthedeviceorinthecloud?Do you want to train on your own computer or in the cloud? Do you want to do inference in the cloud or locally on the device (offline)? In other words, should you use a cloud service to do the deep learning, or maybe roll your own? Let’s find out! The quick & easy option Thhttps://machinethink.net/blog/machine-learning-device-or-cloud/
8.RSPHRSPHLearnFreeRSPH LearnFree hosts all of RSPH free educational resources including our online courses, webinars, videos, podcasts, reports and resources.https://www.rsph.org.uk/our-services/e-learning/rsph-learnfree.html
9.Study:Physicalexerciseboostsmotorlearning—andmemory consolidation, and online + offline learning was used to quantify total learning. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). Credit:Neurobiology of Learning and Memory(2023). DOI: 10.1016/j.nlm.https://medicalxpress.com/news/2024-01-physical-boosts-motor.html
10.Learning题目答案解析,Learning题目答案解析1[高三英语下学期高考模拟] Most of us associate learning with younger people — kids in school and college or recent graduates early in their careers. But at Udemy, an open university offering online courses, Artist Anneke Camstra is ___ in the pursuit of lifelong learning and shows her potenthttps://www.12tiku.com/tiku/so-Learning.html
11.Review:macOSCatalina10.15iswhatApplepromisedtheMacApple is emphasizing that Arcade games will be ad-free and not include (or require) In-App purchases; all game features and updates across the expanding library of titles are included in the $4.99 subscription price. Subscribers can play online or offline, meaning gahttps://appleinsider.com/articles/19/10/07/review-macos-catalina-1015-is-what-apple-promised-the-mac-could-be-and-is-a-crucial-upgrade
12.EnglishModule1.4online learning in the sense of distance learning on the Internet. Because of a lack of agreement on what e-learning is all about, it probably makes sense to use the term online learning when talking about distance learning on the Internet and to use CALL (Computer Assisted Language Learninghttp://www.ict4lt.org/en/en_mod1-4.htm
13.ApplicationsofreinforcementlearninginenergysystemsData-driven models, also known as black box control methods, use the knowledge derived by processing online or offline data instead of depending on the explicit or implicit information of the mathematical model; RL belongs to the data-driven category. Gray box models are those that are between https://www.sciencedirect.com/science/article/pii/S1364032120309023
14.DesigninglearningandassessmentinadigitalageWhat are your institution’s strategic aims for learning, teaching and assessment? What points for improvement have been identified in programme/module reviews or external inspection reports? What learning outcomes are you trying to achieve? In what context will the learning take place? What technologhttps://www.jisc.ac.uk/guides/designing-learning-and-assessment-in-a-digital-age
15.LearnEnglish? Offline Learning. On a plane, at a restaurant, or in a park? No problem! Fun English is available for both online and offline use. WHAT ARE PARENTS SAYING? "As a parent trying to raise bilingual children at home, Studycat is a helpful app to start them off and create excitement https://itunes.apple.com/us/app/fun-english/id428920239
16.QLEARNINGDECISIONTRANSFORMER:LEVERAGUnder review as a conference paper at ICLR 2023 Q-LEARNING DECISION TRANSFORMER: LEVERAG- ING DYNAMIC PROGRAMMING FOR CONDITIONAL SE- QUENCE MODELLING IN OFFLINE RL Anonymous authors Paper under double-blind review ABSTRACT Recent works have shown that tackling offline reinforcement learning (RL) withhttps://openreview.net/pdf?id=oIkZyOytR3g
17.BAKEThe emergence of artificial intelligence and its derivative technologies such as machine learning and15:15 – 16:00 Breakout sessions (attend one or the other) Workshop: Leveraging crowdsourcing From offline to online: A new era of knowledge in Water Supplies Department https://www.polyu.edu.hk/ise/bake/events/past-events?eid=633
18.英语考试冲刺模拟试题(二)Directions:or this part, you are allowed 30 minutes to wrie a composition enitled OnlineLearning or Offline Learning.You should write at least 120 words based on the following outline given in Chinese.Online Learning or Offline Learning https://www.lnbfgj.com/lnxwyyzq/682.html
19.MobileLearningBrowse Mobile Learning content selected by the eLearning Learning community.http://www.elearninglearning.com/mobile-learning/
20.MachineLearningDefinition,types,andexamplesSAPMachine learning is a subset of artificial intelligence (AI) in which computers learn from data and improve with experience without being explicitly programmed.https://www.sap.com/products/artificial-intelligence/what-is-machine-learning.html
21.Advantage,LearnMore–CSAGroupCSA Advantage? is a modern web and mobile application that makes it easier to access, use, and reference standards. With CSA Advantage?, your standards are always available – whether you need them in the office or on the job site, online or offline. https://www.csagroup.org/store/advantage/learn-more/
22.CompareLiberateLearningvs.PersonaLearningin2024quizzes and tests even when they are offline. Once an internet connection is established, activity and progress are recorded and uploaded into theLive Online In Person Training Documentation Webinars Live Online In Person VendorDetails Company Name Liberate Learning Founded http://slashdot.org/software/comparison/Liberate-Learning-vs-Persona-Learning/
23.DeepLearningJobsUpwork?Job Title: Developer Needed to Create an Offline AI-Driven Encrypted CRM for admin assistance Support Job Description: I am seeking a… Deep LearningDeep learning experts may also build tools that use outcomes from deep learning algorithms. This could be in applications such as online loan apphttps://www.upwork.com/freelance-jobs/deep-learning/
24.DeepReinforcementLearningApply deep reinforcement learning to controls and decision-making applications with MATLAB and Simulink.https://www.mathworks.com/solutions/deep-learning/deep-reinforcement-learning.html