ZhiguoShi,ZhejiangUniversity,China;MartinHaardt,IlmenauUniversityofTechnology,Germany
LocalChair:
ChengweiZhou,ZhejiangUniversity,China;QianqianYang,ZhejiangUniversity,China
Program:
Date
Beijing
Time
Speaker
Affiliation
Title
ZoomID
9.6
18:40
-21:00
HingCheungSo
CityUniversity
ofHongKong
RobustMatrixRecovery
ID:
81883886321
Password:
270430
21:00
-23:00
Xiaodong
Wang
Columbia
University
SignalProcessingforRadar
CommunicationCoexistence
9.8
YuejieChi
CarnegieMellonUniversity
ScalableandRobustNonconvex
ApproachesforLow-rank
StructureEstimation
89412454183
28660
9.11
Xiang-Gen
Xia
Universityof
Delaware
RobustRemainderingforRealNumbers
andItsApplicationsinModSampling
85078433872
709776
9.14
19:00
AntonioDe
Maio
NaplesFedericoII
PhasedArrayRadarAdaptiveBeamforming
82988234901
115197
9.15
Andréde
Almeida
FederalUniversityofCeará
IntroductiontoTensorAlgebra(Part1)
84770126252
134394
Z.JaneWang
BritishColumbia
AdversarialDeepLearninginDigital
MediaSecurity&Forensics
9.16
AndréL.F.
deAlmeida
IntroductiontoTensorAlgebra(Part2)
84951650656
114981
9.17
WeiLiu
Sheffield
BasicConceptsand
TechniquesforWidebandBeamforming
85249790611
170792
NuriaGonzalezPrelcic
NorthCarolina
StateUniversity
IntegratedMIMO
CommunicationandSensing:
TheKillerTechnologyforFuture
WirelessNetworks
9.18
WaheedU.
Bajwa
Rutgers
High-dimensionalRegressionand
DictionaryLearning:SomeRecent
AdvancesforTensorData
87451888236
942144
9.19
Elias
Aboutanios
NewSouthWales
DualFunctionRadarCommunications:
ASiblingRivalry
83918653247
595801
YaoXie
GeorgiaInstitute
ofTechnology
LearningPointProcessNetworkusing
DiscreteEventsData
9.20
Xiao-Ping
(Steven)
Zhang
Ryerson
FoundationsinGraphSignalProcessing
84424010065
440404
Pierluigi
SalvoRossi
Norwegian
Scienceand
Technology
SignalProcessingforIoT:
DecisionFusioninSensorNetworks
Domenico
Ciuonzo
Sponsorship:
Sponsor:
ZhejiangUniversity
Co-sponsor:
ChineseInstituteofElectronicsonRadarSociety
HangzhouFutureSci-techCity
Organizer:
GraduateSchoolofZhejiangUniversity
StateKeyLaboratoryofIndustrialControlTechnology
Freeregistration:
P.S.Detailedinformationfortheinvitedspeakers:
CityUniversityofHongKong,China
Titleofthetalk:
HingCheungSo(Fellow,IEEE)wasborninHongKong.HereceivedtheB.Eng.degreeinelectronicengineeringfromtheCityUniversityofHongKong,HongKong,in1990,andthePh.D.degreeinelectronicengineeringfromTheChineseUniversityofHongKong,HongKong,in1995.
From1990to1991,hewasanElectronicEngineerwiththeResearchandDevelopmentDivision,EverexSystemsEngineeringLtd.,HongKong.From1995to1996,hewasaPost-DoctoralFellowwithTheChineseUniversityofHongKong.From1996to1999,hewasaResearchAssistantProfessorwiththeDepartmentofElectronicEngineering,CityUniversityofHongKong,whereheisaprofessor.Hisresearchinterestsincludedetectionandestimation,fastandadaptivealgorithms,multidimensionalharmonicretrieval,robustsignalprocessing,sourcelocalization,andsparseapproximation.
Dr.SowasanElectedMemberoftheSignalProcessingTheoryandMethodsTechnicalCommitteeoftheIEEESignalProcessingSociety,from2011to2016,wherehewastheChairoftheAwardsSubcommitteefrom2015to2016.HehasbeenontheeditorialboardsofIEEESignalProcessingMagazinefrom2014to2017,theIEEETransactionsonSignalProcessingfrom2010to2014,SignalProcessingsince2010,andDigitalSignalProcessingsince2011.HewasalsotheLeadGuestEditoroftheIEEEJournalofSelectedTopicsinSignalProcessing,specialissueonAdvancesinTime/FrequencyModulatedArraySignalProcessingin2017.
AbstractoftheLecture
Manyreal-worldsignalssuchastextual,visual,audioandfinancialdatalienearsomelow-dimensionalsubspace.Low-rankmatrixapproximationreferstoextractingthelow-dimensionalorsignalsubspacefromatwo-dimensionalarray,whilelow-rankmatrixcompletionaimstofindalow-rankmatrixfromonlyasubsetofpossiblynoisyentries.Conventionaltechniquesformatrixrecoveryincludetheconvexoptimizationapproach,whichminimizesthenuclearnormsubjecttoaconstraintontheFrobeniusnormoftheresidual.However,theymaynotberobusttooutliersandhaveahighcomputationalcomplexity.Inthistalk,Iwillpresenttwolp-normbasedfactorizationmethodstoachievecomputationallysimplerandrobustmatrixrecovery.Applicationexampleswillalsobeprovided.
XiaodongWang
ColumbiaUniversity,USA
SignalProcessingforRadarCommunicationCoexistence
XiaodongWangreceivedthePh.D.degreeinElectricalEngineeringfromPrincetonUniversity.HeisaProfessorofElectricalEngineeringatColumbiaUniversityinNewYork.
Dr.Wang’sresearchinterestsfallinthegeneralareasofsignalprocessingandcommunications,andhaspublishedextensivelyintheseareas.Amonghispublicationsisabookentitled“WirelessCommunicationSystems:AdvancedTechniquesforSignalReception”,publishedbyPrenticeHallin2003.Hiscurrentresearchinterestsincludewirelesscommunications,statisticalsignalprocessing,andgenomicsignalprocessing.Dr.Wangreceivedthe1999NSFCAREERAward,the2001IEEECommunicationsSocietyandInformationTheorySocietyJointPaperAward,andthe2011IEEECommunicationSocietyAwardforOutstandingPaperonNewCommunicationTopics.HehasservedasanAssociateEditorfortheIEEETransactionsonCommunications,theIEEETransactionsonWirelessCommunications,theIEEETransactionsonSignalProcessing,andtheIEEETransactionsonInformationTheory.HeisaFellowoftheIEEEandlistedasanISIHighly-citedAuthor.
CarnegieMellonUniversity,USA
Scalableandrobustnonconvexapproachesforlow-rankstructureestimation
Manyinverseproblemsencounteredinsensingandimagingcanbeformulatedasestimatingalow-rankobjectfromincompletelinearmeasurements;examplesincludephaseretrieval,matrixcompletion,blinddeconvolution,low-ranktensorestimation,andsoon.Throughthelensofmatrixandtensorfactorization,oneofthemostpopularapproachesistoemploysimpleiterativealgorithmssuchasgradientdescenttorecoverthelow-rankfactorsdirectly,whichallowsmallmemoryandcomputationfootprints.Despitewideempiricalsuccess,thetheoreticalunderpinningshaveremainedelusive.Inthistalk,Iwilldiscussourrecentlineofeffortsinunderstandingthegeometryofthenonconvexlosslandscapewiththeaidofstatisticalreasoning,andhowgradientdescentharnessessuchgeometryinanimplicitmannertoachievebothcomputationalandstatisticalefficiencyallatonce.Furthermore,Iwilldiscusshowtoadjustvanillagradientdescenttomakeitprovablyrobusttooutliersandill-conditioningwithoutlosingcomputationalandstatisticalefficiency.
Xiang-GenXia
UniversityofDelaware,USA
RobustRemainderingforRealNumbersandItsApplicationsinModSampling
Xiang-GenXiareceivedhisPh.D.degreeinelectricalengineeringfromtheUniversityofSouthernCalifornia,LosAngeles.HeiscurrentlytheCharlesBlackEvansProfessorattheDepartmentofElectricalandComputerEngineering,UniversityofDelaware,USA.HiscurrentresearchinterestsincludeMIMOandOFDMcommunicationssystems,andSARandISARimaging.Dr.XiaistheauthorofthebookModulatedCodingforIntersymbolInterferenceChannels(NewYork,MarcelDekker,2000).
Dr.XiareceivedtheNationalScienceFoundation(NSF)FacultyEarlyCareerDevelopment(CAREER)ProgramAwardin1997,theOfficeofNavalResearch(ONR)YoungInvestigatorProgram(YIP)Awardin1998,andtheOutstandingOverseasYoungInvestigatorAwardfromtheNationalNatureScienceFoundationofChinain2001.Hereceivedthe2019InformationTheoryOutstandingOverseasChineseScientistAward,TheInformationTheorySocietyofChineseInstituteofElectronics.Dr.XiaistheGeneralCo-ChairofICASSP2005inPhiladelphia.HeisaFellowofIEEE.
AlargeintegercanbereconstructedfromitsseveralmuchsmallerremaindersandChineseRemainderTheorem(CRT)providesasolution.However,itiswell-knownthatCRTisnotrobustinthesensethatasmallerrorinaremaindermaycausealargeerrorinthereconstruction.WehavestudiedrobustCRTinthelastdecadesuchthatalargeintegercanberobustlyreconstructedfromitserroneousremaindersaslongastheerrorsintheremaindersarenottoolarge.Inthistalk,IwillbrieflytalkabouttherobustCRTnotonlyforlargeintegerreconstructionsbutalsoforlargerealnumberreconstructionsfromerroneousremainders.Wethenbrieflyintroduceitsapplicationsinmodsampling,whereasignalisreconstructedfromitsmodsamplings.Itisrelatedtounlimitedsampling.
AntonioDeMaio
UniversityofNaplesFedericoII,Italy
Thispresentationisfocusedonadaptivedigitalbeamforming(DBF)forphasedarrayradar.FirstofallbasicconceptsaboutDBFaregiven.Thenchallengesconnectedwiththepracticalimplementationandthecomputationalissuesarepinpointed.Architecturesbasedontheuseofsubarraysarepresentedaccountingforregularandirregularconfigurations.ThusadiscussionontheadaptiveimplementationoftheDBFisprovidedincludingissuesconnectedwithadaptivejammingcancellationandtrainingdataselection.Inthisrespect,theeffectsofnon-idealitiesencounteredinpracticalenvironmentsaswellasofamisguidedtrainingdatachoiceareexplainedtogetherwithamachinelearning-basedapproachtoselecttheappropriatereferencedataforadaptation.Specialarchitecturessuchassidelobecancellerandadaptivebeamspacecancellationarepresented.Finallysomeevolutionsofthephasedarrayconceptarediscussed.
AndrédeAlmeida
FederalUniversityofCeará,Brazil
IntroductiontoTensorAlgebra(Part1&Part2)
Tensoralgebraprovidesageneralizationofmatrixalgebrafordimensionsgreaterthantwo,byoperatingondataarraysofthreeormoredimensions.Ithasarichhistorythatspansalmostacenturyandspansseveraldisciplines.Butonlyrecentlyhavetheybecomeubiquitousinanalytics,signalprocessing,statistics,datamining,andmachinelearning.Thebroadsuccessoftensormethodscanbeattributedtotheirabilitytomodel,analyze,predict,recognizeandlearnfrommultimodaldata.Thisshortcourse,dividedintotwoparts,providesastartingpointforresearchersandpractitionersinterestedinmanipulatingandexploringtensoralgebratools,focusingonthefundamentalsandmotivationfortensoralgebra.Weconceptualizetensors,theirmainproperties,andoperators,overviewthemaintensordecompositions,andfactorestimationalgorithms.Wealsoprovideabrieflookatsomeapplicationstoselectedcommunicationsandsignalprocessingproblems.
UniversityofBritishColumbia,Canada
AdversarialDeepLearninginDigitalMediaSecurity&Forensics
ThistalkgivesabriefreviewofWanggroup’scurrentresearcheffortsatUBC,intheareasofAdversarialDeepLearninginDigitalMediaSecurity&Forensics.Deeplearninghasachievedstate-of-the-artperformancesinmanyapplications.Unfortunately,currentdeeplearningmodelshowevercouldbesensitivetoperturbations,givingrisetosecurity,privacyandreliabilityissuesinpracticalapplications.
Undertheparadigmofadversarialdeeplearning,asanattacker,westudypotentialadversarialattacksandexplorenovelapproachestoscrutinizepotentialvulnerabilitiesofdeeplearningmodelsindigitalmediasecurity&forensics,byinvestigatingthreefundamentallearningtasks:matching,classificationandregression.Specifically,thistalkpresentsnovelattacks(bothinthedigitaldomainandinthephysicaldomain)forseveralessentialmodelsbelongingtotheabovethreedominanttasks:1)imagehashingforimageretrievalandauthentication,asatypicalmatchingtask;2)GAN-generatedfakefaceimageryforensics,asarepresentativebinaryclassificationtask;3)multiclassimageclassification;4)camera-LIDAR3dobjectdetection;and5)singleobjecttrackinginvideos,whichisanimportantvideosurveillancemodelinvolvingacombinationofthematchingtask,theclassificationtaskandtheregressiontask.Weaddresssecurityandprivacythreatsthatariseintheabovetypicaldigitalmediaproblemsandstudyhowtofooldeeplearningmodelstomakewrongdecisions.
UniversityofSheffield,UK
BasicConceptsandTechniquesforWidebandBeamforming
Hisresearchinterestscoverawiderangeoftopicsinsignalprocessing,withafocusonsensor(antenna,hydrophone,microphone,seismometer,etc.)arraysignalprocessing(beamformingandsourceseparation/extraction,directionofarrivalestimation,targettrackingandlocalization,etc.),anditsvariousapplications,suchasroboticsandautonomousvehicles,remotesensing,humancomputerinterface,dataanalysis,radar,sonar,andwirelesscommunications.
Thistutorialwillfocusonbasicideasandtechniquesforwidebandbeamforming.Thetopicscoveredincludethedifferencebetweennarrowbandbeamformingandwidebandbeamformingandtheirdifferentapproaches(sensordelay-linebasedandtappeddelay-linebased),fixedwidebandbeamformerdesign(inparticularfrequencyinvariantbeamformers),adaptivewidebandbeamforming(suchasreferencesignalbasedbeamformer,thelinearlyconstrainedminimumvariancebeamformeranditsvariation,andsubband/frequency-domainmethodsforwidebandbeamforming),andotherissuesinwidebandbeamformingsuchasrobustdesignagainstvariousmodelerrorsandsensorlocationoptimisationforimprovedperformance.
NorthCarolinaStateUniversity,USA
IntegratedMIMOcommunicationandsensing:thekillertechnologyforfuturewirelessnetworks
NuriaGonzálezPrelciciscurrentlyanAssociateProfessorwiththeElectricalandComputerEngineeringDepartment,NorthCarolinaStateUniversity.Hermainresearchinterestsincludesignalprocessingtheoryandsignalprocessingandmachinelearningforwirelesscommunicationsandsensing:filterbanks,compressivesamplingandestimation,multicarriermodulation,massiveMIMO,MIMOprocessingformillimeter-wavecommunicationandsensing,includingvehicle-to-everything(V2X),air-to-everything(A2X),satelliteMIMOcommunication,positioning,andjointradarandcommunication.Shehaspublishedmorethan80articlesinthetopicofsignalprocessingformillimeter-wavecommunications.SheisamemberoftheIEEESensorArrayandMultichannelSignalProcessingTechnicalCommittee.ShewasthefounderDirectoroftheAtlanticResearchCenterforInformationandCommunicationTechnologies(atlanTTic)attheUniversityofVigo,fromJuly2008toJanuary2017.SheisanEditoroftheIEEETransactionsonWirelessCommunicationsandanAreaEditoroftheIEEESignalProcessingMagazine.
WaheedU.Bajwa
RutgersUniversity,USA
High-dimensionalRegressionandDictionaryLearning:SomeRecentAdvancesforTensorData
EliasAboutanios
UniversityofNewSouthWales,Australia
DualFunctionRadarCommunications:ASiblingRivalry
GeorgiaInstituteofTechnology,USA
Learningpointprocessnetworkusingdiscreteeventsdata
YaoXiereceivedthePh.D.degreeinelectricalengineeringfromStanfordUniversity,withafocusonmathematics.SheiscurrentlyanAssociateProfessorandtheHaroldR.andMaryAnneNashEarlyCareerProfessorwiththeH.MiltonStewartSchoolofIndustrialandSystemsEngineering,GeorgiaInstituteofTechnologyandalsoanAssociateDirectoroftheMachineLearningCenter.Herresearchareasarestatistics,sequentialanalysisandsequentialchange-pointdetection,machinelearning,andsignalprocessing.ShereceivedtheNationalScienceFoundation(NSF)CAREERAwardin2017.SheisalsoanAssociateEditorforIEEETransactionsonSignalProcessing.
Xiao-Ping(Steven)Zhang
RyersonUniversity,Canada
Xiao-Ping(Steven)Zhang(xzhang@ryerson.ca)receivedtheB.S.andPh.D.degreesfromTsinghuaUniversity,Beijing,China,inelectronicengineeringandtheM.B.A.degreeinfinance,economics,andentrepreneurshipfromtheUniversityofChicago,Illinois.HeisaprofessorofelectricalandcomputerengineeringandiscrossappointedtotheFinanceDepartmentattheTedRogersSchoolofManagementatRyersonUniversity,Toronto,Canada.Hisresearchinterestsincludesignalprocessing,electronicsystems,machinelearning,bigdata,finance,andmarketing.HeisthecofounderandchiefexecutiveofficerforEidoSearch,anOntario-basedcompanyofferingacontent-basedsearchandanalysisengineforfinancialbigdata.
PierluigiSalvoRossi
NorwegianUniversityofScienceandTechnology,Norway
SignalProcessingforIoT:DecisionFusioninSensorNetworks
Thedigitaltransformationispervadingalmosteveryaspectofhumanlife,rangingfromhealthcaretoindustry,fromentertainmenttocommunicationsandsecurity.Inthisrespect,theInternet-of-Things(IoT)paradigmplaysacrucialrole,withamultitudeofnetworkeddevicesinteractingwiththephysicalworldandprovidingservicesthroughdatacollection,communication,processingandcontrol.
Thislectureadoptsastatisticalsignalprocessingperspectiveandfocusesonthedistributedversionofthebinary-hypothesistestwhichsupportsseveralenergy-efficientIoTpracticalapplicationsconcerningtherobustdetectionofaphenomenonofinterest(e.g.environmentalhazard,oil/gasleakage,forestfire).TheobjectiveofthislectureistocoverdesignandanalysisoffusionapproachesforfutureIoTsetup.
DomenicoCiuonzo
D.CiuonzoreceivedthePh.D.degreeinelectronicengineeringfromtheUniversityofCampania“L.Vanvitelli,”Italy.Since2011,hehasbeenholdingseveralvisitingresearcherappointments.HeiscurrentlyanAssistantProfessorwiththeUniversityofNaples“FedericoII,”Italy.Hisresearchinterestsincludedatafusion,statisticalsignalprocessing,wirelesssensornetworks,theInternetofThings,trafficanalysis,andmachinelearning.Since2014,hehasbeenanEditorofseveralIEEE,IET,andELSEVIERjournals.
Address:38ZhedaRoad,Hangzhou,ZhejiangProvince,310027,P.R.China