自然语言强化学习:一个可处理语言反馈的强化学习框架

在人工智能发展史上,强化学习(RL)凭借其严谨的数学框架解决了众多复杂的决策问题,从围棋、国际象棋到机器人控制等领域都取得了突破性进展。然而,随着应用场景日益复杂,传统强化学习过度依赖单一数值奖励的局限性日益凸显。在现实世界中,反馈信号往往是多维度、多模态的,例如教练的口头指导、视觉示范,或是详细的文字说明。近日,来自伦敦大学学院、上海交通大学、布朗大学、新加坡国立大学和布里斯托大学的联合研究团队提出了全新的自然语言强化学习(NaturalLanguageReinforcementLearning,NLRL)范式,成功将强化学习的核心概念类比为基于自然语言的形式,开辟了一条通向更智能、更自然的AI决策学习的新道路。

从数值到语言:新范式的萌芽

自然语言强化学习

从理论到实践

具体来说,当系统需要评估某个状态时,它会:

1.从该状态开始采样K条完整轨迹

2.将每条轨迹转化为详细的文本描述

3.使用专门设计的提示让LLM扮演“专家评估员”的角色

4.LLM分析所有轨迹描述,提取关键模式和见解

在NLRL中,语言时序差分学习包含三个关键组件:

1.文本描述生成器d:将状态转换(s,a,r,s')转化为自然语言描述

THE END
1.图书馆ai资源,铺就智慧的快车道学校名称《动手学深度学习》(Dive into Deep Learning)是深度学习入门的书籍、教程和课程,由李沐、Aston Zhang、Zack Lipton和Alex J. Smola等人共同编写。 该教程以Python和MXNet框架为基础,介绍了深度学习的基本概念、算法、实践技巧和最新进展。你可以从其网站上找到相应的课程和教材,《动手学深度学习》 https://lib.uoh.edu.cn/info/1027/3059.htm
2.OpenBayes一周速览入选NeurIPS!浙大开源优化蛋白质语言模型De公共资源速递 5 个数据集:* MELD 情绪识别音频数据集 * RSSCN7 Dataset 遥感图像数据集 * P-MMEval 多语言多任务基准数据集 * TCM Ancient Books 中医药古籍数据集 * Mol-Instructions 大规模生物分子指令数据集 …https://zhuanlan.zhihu.com/p/12986328372
3.基于图神经网络的大语言模型检索增强生成框架研究算法大模型在大型语言模型(LLMs)相关的人工智能突破中,图神经网络(GNNs)与LLMs的融合已成为一个极具前景的研究方向。这两类模型的结合展现出显著的互补性,能够协同增强LLMs的推理能力和上下文理解能力。通过从知识图谱(KGs)存储的海量信息中进行智能化检索,该结合能够生成准确且不含幻觉的答案。 https://www.163.com/dy/article/JJH9N5RV0531D9VR.html
4.Identificationofheartratechangeduringtheteachingsystem. The use of sensory networks in the learning process can be a useful tool to optimize the teaching process itself and to support educationonline materials about a patient’s problem. If attention is diverted to other activities, such as processing emotions or integrating information, https://www.nature.com/articles/s41598-023-43763-x
5.LMSLMS from American Academy of Physical Medicine and Rehabilitationhttps://onlinelearning.aapmr.org/
6.dblp:ShojiMakinoTeacher-Student Learning for Low-Latency Online Speech Enhancement Using Wave-U-Net. ICASSP 2021:Evaluation of Multichannel Hearing Aid System by Rank-Constrained Spatial Covariance Matrix EstimationSonification of muscular activity in human movements using the temporal patterns in EMG. APSIPA 2012https://dblp.dagstuhl.de/pid/31/6801.html
7.goflags/portsLearning Pathways White papers, Ebooks, Webinars Customer Stories Partners Executive Insights Open Source GitHub Sponsors Fund open source developers The ReadME Project GitHub community articles Repositories Topics Trending Collections Enterprise Enterprise platform https://github.com/projectdiscovery/goflags/blob/b5f8d3f4fe982e27a6009f32fadc6ca3fb140a3b/ports_data.json
8.FrontiersKurtosisbasedblindsourceextractionofcomplexThe aim of blind source separation (BSS) is to reconstruct the original sources by identifying the inverse of the mixing system, without having explicitIn this paper, we introduce an online BSE algorithm suitable for the generality of complex-valued signals, both circular and non-circular. Thihttp://dx.doi.org/10.3389/fnins.2011.00105
9.Physiologicalmonitorincludinganobjectivepainmeasurementthe subject to generate at least two sets of electrical activity measurements. The system further“Tracking of changes in latency and amplitude of the evoked potential by using adaptive LMS (EMG) activity, motion artifacts (such as caused by eyeball, eyelid and head movements), and https://www.freepatentsonline.com/6751499.html
10.FrontiersKurtosisbasedblindsourceextractionofcomplexThe aim of blind source separation (BSS) is to reconstruct the original sources by identifying the inverse of the mixing system, without having explicitIn this paper, we introduce an online BSE algorithm suitable for the generality of complex-valued signals, both circular and non-circular. Thihttps://www.frontiersin.org/articles/10.3389/fnins.2011.00105/full
11.UsingDataFusionfromWearableInertialandSurfaceEMGA series of machine learning algorithms were applied to the recorded motion data to produce evaluation indicators, which is able to reflect the Sensing Devices In order to capture upper-limb movements, a home-made sensing system consisting of two IMUs and 10 surface EMG sensors in totalhttps://www.mdpi.com/1424-8220/17/3/582/pdf
12.Asystematicreviewofneurophysiologicalsensingforthelearning to improve accuracy of pain monitoring systems. This review also identifies the need forthe assumption that pain induces changes in autonomic activity of the nervous system and that (EMG), and pupillometry. Similarly, there are non-invasive methods to measure activity in the https://link.springer.com/article/10.1038/s41746-023-00810-1
13.CompareCriterionHCMvs.EmgageHRin2024and elevate the employee lifecycle with a single-system platform. We are APS, your workforce partner. Mid-sized businesses choose APS as their workforceBridge is a Learning (LMS) & Employee Development (performance management and skills) platform that uniquely combines learning management, career http://slashdot.org/software/comparison/Criterion-HCM-vs-Emgage-HR/