谷歌开发者机器学习词汇表:纵览机器学习基本词汇与概念163

机器之心曾开放过人工智能术语集,该术语库项目目前收集了人工智能领域700多个专业术语,但仍需要与各位读者共同完善与修正。本文编译自谷歌开发者机器学习术语表项目,介绍了该项目所有的术语与基本解释。之后,我们也将表内术语更新到了机器之心GitHub项目中。

A

准确率(accuracy)

分类模型预测准确的比例。在多类别分类中,准确率定义如下:

在二分类中,准确率定义为:

激活函数(Activationfunction)

一种函数(例如ReLU或Sigmoid),将前一层所有神经元激活值的加权和输入到一个非线性函数中,然后向下一层传递该函数的输出值(典型的非线性)。

AdaGrad

AUC(曲线下面积)

一种考虑到所有可能的分类阈值的评估标准。ROC曲线下面积代表分类器随机预测真正类(TurePositives)要比假正类(FalsePositives)概率大的确信度。

B

反向传播(Backpropagation)

神经网络中完成梯度下降的重要算法。首先,在前向传播的过程中计算每个节点的输出值。然后,在反向传播的过程中计算与每个参数对应的误差的偏导数。

基线(Baseline)

被用为对比模型表现参考点的简单模型。基线帮助模型开发者量化模型在特定问题上的预期表现。

批量

模型训练中一个迭代(指一次梯度更新)使用的样本集。

批量大小(batchsize)

一个批量中样本的数量。例如,SGD的批量大小为1,而mini-batch的批量大小通常在10-1000之间。批量大小通常在训练与推理的过程中确定,然而TensorFlow不允许动态批量大小。

偏置(bias)

与原点的截距或偏移量。偏置(也称偏置项)被称为机器学习模型中的b或者w0。例如,偏置项是以下公式中的b:y′=b+w_1x_1+w_2x_2+…w_nx_n。

注意不要和预测偏差混淆。

二元分类器(binaryclassification)

一类分类任务,输出两个互斥(不相交)类别中的一个。例如,一个评估邮件信息并输出「垃圾邮件」或「非垃圾邮件」的机器学习模型就是一个二元分类器。

binning/bucketing

根据值的范围将一个连续特征转换成多个称为buckets或者bins二元特征,称为buckets或者bins。例如,将温度表示为单一的浮点特征,可以将温度范围切割为几个离散的bins。假如给定的温度的敏感度为十分之一度,那么分布在0.0度和15.0度之间的温度可以放入一个bin中,15.1度到30.0度放入第二个bin,30.1度到45.0度放入第三个bin。

C

标定层(calibrationlayer)

一种调整后期预测的结构,通常用于解释预测偏差。调整后的预期和概率必须匹配一个观察标签集的分布。

候选采样(candidatesampling)

检查点(checkpoint)

在特定的时刻标记模型的变量的状态的数据。检查点允许输出模型的权重,也允许通过多个阶段训练模型。检查点还允许跳过错误继续进行(例如,抢占作业)。注意其自身的图式并不包含于检查点内。

类别(class)

所有同类属性的目标值作为一个标签。例如,在一个检测垃圾邮件的二元分类模型中,这两个类别分别是垃圾邮件和非垃圾邮件。而一个多类别分类模型将区分狗的种类,其中的类别可以是贵宾狗、小猎兔狗、哈巴狗等等。

类别不平衡数据集(class-imbalanceddataset)

这是一个二元分类问题,其中两个类别的标签的分布频率有很大的差异。比如,一个疾病数据集中若0.01%的样本有正标签,而99.99%的样本有负标签,那么这就是一个类别不平衡数据集。但对于一个足球比赛预测器数据集,若其中51%的样本标记一队胜利,而49%的样本标记其它队伍胜利,那么这就不是一个类别不平衡数据集。

分类模型(classification)

机器学习模型的一种,将数据分离为两个或多个离散类别。例如,一个自然语言处理分类模型可以将一句话归类为法语、西班牙语或意大利语。分类模型与回归模型(regressionmodel)成对比。

分类阈值(classificationthreshold)

应用于模型的预测分数以分离正类别和负类别的一种标量值标准。当需要将logistic回归的结果映射到二元分类模型中时就需要使用分类阈值。例如,考虑一个确定给定邮件为垃圾邮件的概率的logistic回归模型,如果分类阈值是0.9,那么logistic回归值在0.9以上的被归为垃圾邮件,而在0.9以下的被归为非垃圾邮件。

混淆矩阵(confusionmatrix)

总结分类模型的预测结果的表现水平(即,标签和模型分类的匹配程度)的NxN表格。混淆矩阵的一个轴列出模型预测的标签,另一个轴列出实际的标签。N表示类别的数量。在一个二元分类模型中,N=2。例如,以下为一个二元分类问题的简单的混淆矩阵:

上述混淆矩阵展示了在19个确实为肿瘤的样本中,有18个被模型正确的归类(18个真正),有1个被错误的归类为非肿瘤(1个假负类)。类似的,在458个确实为非肿瘤的样本中,有452个被模型正确的归类(452个真负类),有6个被错误的归类(6个假正类)。

多类别分类的混淆矩阵可以帮助发现错误出现的模式。例如,一个混淆矩阵揭示了一个识别手写数字体的模型倾向于将4识别为9,或者将7识别为1。混淆矩阵包含了足够多的信息可以计算很多的模型表现度量,比如精度(precision)和召回(recall)率。

连续特征(continuousfeature)

拥有无限个取值点的浮点特征。和离散特征(discretefeature)相反。

收敛(convergence)

训练过程达到的某种状态,其中训练损失和验证损失在经过了确定的迭代次数后,在每一次迭代中,改变很小或完全不变。换句话说就是,当对当前数据继续训练而无法再提升模型的表现水平的时候,就称模型已经收敛。在深度学习中,损失值下降之前,有时候经过多次迭代仍保持常量或者接近常量,会造成模型已经收敛的错觉。

凸函数(concexfunction)

一种形状大致呈字母U形或碗形的函数。然而,在退化情形中,凸函数的形状就像一条线。例如,以下几个函数都是凸函数:

凸函数是很常用的损失函数。因为当一个函数有最小值的时候(通常就是这样),梯度下降的各种变化都能保证找到接近函数最小值的点。类似的,随机梯度下降的各种变化有很大的概率(虽然无法保证)找到接近函数最小值的点。

两个凸函数相加(比如,L2损失函数+L1正则化函数)后仍然是凸函数。

深度模型通常是非凸的。出乎意料的是,以凸优化的形式设计的算法通常都能在深度网络上工作的很好,虽然很少能找到最小值。

成本(cost)

loss的同义词。

交叉熵(cross-entropy)

多类别分类问题中对Log损失函数的推广。交叉熵量化两个概率分布之间的区别。参见困惑度(perplexity)。

D

数据集(dataset)

样本的集合。

决策边界(decisionboundary)

在一个二元分类或多类别分类问题中模型学习的类别之间的分离器。例如,下图就展示了一个二元分类问题,决策边界即橙点类和蓝点类的边界。

深度模型(deepmodel)

一种包含多个隐藏层的神经网络。深度模型依赖于其可训练的非线性性质。和宽度模型对照(widemodel)。

密集特征(densefeature)

大多数取值为非零的一种特征,通常用取浮点值的张量(tensor)表示。和稀疏特征(sparsefeature)相反。

派生特征(derivedfeature)

合成特征(syntheticfeature)的同义词。

离散特征(discretefeature)

只有有限个可能取值的一种特征。例如,一个取值只包括动物、蔬菜或矿物的特征就是离散(或类别)特征。和连续特征(continuousfeature)对照。

dropout正则化(dropoutregularization)

训练神经网络时一种有用的正则化方法。dropout正则化的过程是在单次梯度计算中删去一层网络中随机选取的固定数量的单元。删去的单元越多,正则化越强。

动态模型(dynamicmodel)

以连续更新的方式在线训练的模型。即数据连续不断的输入模型。

E

早期停止法(earlystopping)

一种正则化方法,在训练损失完成下降之前停止模型训练过程。当验证数据集(validationdataset)的损失开始上升的时候,即泛化表现变差的时候,就该使用早期停止法了。

嵌入(embeddings)

一类表示为连续值特征的明确的特征。嵌入通常指将高维向量转换到低维空间中。例如,将一个英语句子中的单词以以下任何一种方式表示:

在TensorFlow中,嵌入是通过反向传播损失训练的,正如神经网络的其它参量一样。

经验风险最小化(empiricalriskminimization,ERM)

选择能最小化训练数据的损失的模型函数的过程。和结构风险最小化(structualriskminimization)对照。

集成(ensemble)

多个模型预测的综合考虑。可以通过以下一种或几种方法创建一个集成方法:

深度和广度模型是一种集成。

评估器(Estimator)

样本(example)

一个数据集的一行内容。一个样本包含了一个或多个特征,也可能是一个标签。参见标注样本(labeledexample)和无标注样本(unlabeledexample)。

F

假负类(falsenegative,FN)

被模型错误的预测为负类的样本。例如,模型推断一封邮件为非垃圾邮件(负类),但实际上这封邮件是垃圾邮件。

假正类(falsepositive,FP)

被模型错误的预测为正类的样本。例如,模型推断一封邮件为垃圾邮件(正类),但实际上这封邮件是非垃圾邮件。

假正类率(falsepositiverate,FPrate)

ROC曲线(ROCcurve)中的x轴。FP率的定义是:假正率=假正类数/(假正类数+真负类数)

特征(feature)

输入变量,用于做出预测。

特征列(featurecolumns/FeatureColumn)

TensorFlow中的特征列还可以压缩元数据比如下列情况:

特征交叉(featurecross)

将特征进行交叉(乘积或者笛卡尔乘积)运算后得到的合成特征。特征交叉有助于表示非线性关系。

特征工程(featureengineering)

特征集(featureset)

机器学习模型训练的时候使用的特征群。比如,邮政编码,面积要求和物业状况可以组成一个简单的特征集,使模型能预测房价。

特征定义(featurespec)

描述所需的信息从tf.Example协议缓存中提取特征数据。因为tf.Example协议缓存只是数据的容器,必须明确以下信息:

EstimatorAPI提供了从一群特征列中生成一个特征定义的工具。

完全softmax(fullsoftmax)

参见softmax。和候选采样对照。

G

泛化(generalization)

指模型利用新的没见过的数据而不是用于训练的数据作出正确的预测的能力。

广义线性模型(generalizedlinearmodel)

最小二乘回归模型的推广/泛化,基于高斯噪声,相对于其它类型的模型(基于其它类型的噪声,比如泊松噪声,或类别噪声)。广义线性模型的例子包括:

广义线性模型的参数可以通过凸优化得到,它具有以下性质:

广义线性模型的能力局限于其特征的性质。和深度模型不同,一个广义线性模型无法「学习新的特征」。

梯度(gradient)

所有变量的偏导数的向量。在机器学习中,梯度是模型函数的偏导数向量。梯度指向最陡峭的上升路线。

梯度截断(gradientclipping)

在应用梯度之前先修饰数值,梯度截断有助于确保数值稳定性,防止梯度爆炸出现。

梯度下降(gradientdescent)

图(graph)

在TensorFlow中的一种计算过程展示。图中的节点表示操作。节点的连线是有指向性的,表示传递一个操作(一个张量)的结果(作为一个操作数)给另一个操作。使用TensorBoard能可视化计算图。

H

启发式(heuristic)

一个问题的实际的和非最优的解,但能从学习经验中获得足够多的进步。

隐藏层(hiddenlayer)

神经网络中位于输入层(即特征)和输出层(即预测)之间的合成层。一个神经网络包含一个或多个隐藏层。

折页损失函数(Hingeloss)

loss=max(0,1(y′y))

其中y'是分类器模型的列输出:

y′=b+w_1x_1+w_2x_2+…w_nx_n

y是真实的标签,-1或+1。

因此,hinge损失将是下图所示的样子:

测试数据(holdoutdata)

有意不用于训练的样本。验证数据集(validationdataset)和测试数据集(testdataset)是测试数据(holdoutdata)的两个例子。测试数据帮助评估模型泛化到除了训练数据之外的数据的能力。测试集的损失比训练集的损失提供了对未知数据集的损失更好的估计。

超参数(hyperparameter)

连续训练模型的过程中可以拧动的「旋钮」。例如,相对于模型自动更新的参数,学习率(learningrate)是一个超参数。和参量对照。

I

独立同分布(independentlyandidenticallydistributed,i.i.d)

推断(inference)

在机器学习中,通常指将训练模型应用到无标注样本来进行预测的过程。在统计学中,推断指在观察到的数据的基础上拟合分布参数的过程。

输入层(inputlayer)

神经网络的第一层(接收输入数据)。

评分者间一致性(inter-rateragreement)

用来衡量一项任务中人类评分者意见一致的指标。如果意见不一致,则任务说明可能需要改进。有时也叫标注者间信度(inter-annotatoragreement)或评分者间信度(inter-raterreliability)。

K

Kernel支持向量机(KernelSupportVectorMachines/KSVM)

一种分类算法,旨在通过将输入数据向量映射到更高维度的空间使正类和负类之间的边际最大化。例如,考虑一个输入数据集包含一百个特征的分类问题。为了使正类和负类之间的间隔最大化,KSVM从内部将特征映射到百万维度的空间。KSVM使用的损失函数叫作hinge损失。

L

L1损失函数(L1loss)

损失函数基于模型对标签的预测值和真实值的差的绝对值而定义。L1损失函数比起L2损失函数对异常值的敏感度更小。

L1正则化(L1regularization)

L2损失(L2loss)

参见平方损失。

L2正则化(L2regularization)

一种正则化,按照权重平方的总和的比例进行惩罚。L2正则化帮助促使异常值权重更接近0而不趋近于0。(可与L1正则化对照阅读。)L2正则化通常改善线性模型的泛化效果。

标签(label)

在监督式学习中,样本的「答案」或「结果」。标注数据集中的每个样本包含一或多个特征和一个标签。比如,在房屋数据集中,特征可能包括卧室数量、卫生间数量、房龄,而标签可能就是房子的价格。在垃圾邮件检测数据集中,特征可能包括主题、发出者何邮件本身,而标签可能是「垃圾邮件」或「非垃圾邮件」。

标注样本(labeledexample)

包含特征和标签的样本。在监督式训练中,模型从标注样本中进行学习。

lambda

层(layer)

神经网络中的神经元序列,可以处理输入特征序列或神经元的输出。

它也是TensorFlow的一种抽象化概念。层是将张量和配置选项作为输入、输出其他张量的Python函数。一旦必要的张量出现,用户就可以通过模型函数将结果转换成估计器。

学习率(learningrate)

通过梯度下降训练模型时使用的一个标量。每次迭代中,梯度下降算法使学习率乘以梯度,乘积叫作gradientstep。

学习率是一个重要的超参数。

最小二乘回归(leastsquaresregression)

通过L2损失最小化进行训练的线性回归模型。

线性回归(linearregression)

对输入特征的线性连接输出连续值的一种回归模型。

logistic回归(logisticregression)

将sigmoid函数应用于线性预测,在分类问题中为每个可能的离散标签值生成概率的模型。尽管logistic回归常用于二元分类问题,但它也用于多类别分类问题(这种情况下,logistic回归叫作「多类别logistic回归」或「多项式回归」。

对数损失函数(LogLoss)

二元logistic回归模型中使用的损失函数。

损失

度量模型预测与标签距离的指标,它是度量一个模型有多糟糕的指标。为了确定损失值,模型必须定义损失函数。例如,线性回归模型通常使用均方差作为损失函数,而logistic回归模型使用对数损失函数。

M

机器学习(machinelearning)

均方误差(MeanSquaredError/MSE)

每个样本的平均平方损失。MSE可以通过平方损失除以样本数量来计算。TensorFlowPlayground展示「训练损失」和「测试损失」的值是MSE。

小批量(mini-batch)

在训练或推断的一个迭代中运行的整批样本的一个小的随机选择的子集。小批量的大小通常在10到1000之间。在小批量数据上计算损失比在全部训练数据上计算损失要高效的多。

小批量随机梯度下降(mini-batchstochasticgradientdescent)

使用小批量的梯度下降算法。也就是,小批量随机梯度下降基于训练数据的子集对梯度进行评估。VanillaSGD使用size为1的小批量。

模型(model)

模型训练(modeltraining)

确定最佳模型的过程。

动量(Momentum)

多类别(multi-class)

在多于两类的类别中进行分类的分类问题。例如,有约128种枫树,那么分类枫树品种的模型就是多类别的。反之,把电子邮件分成两个类别(垃圾邮件和非垃圾邮件)的模型是二元分类器模型。

N

NaNtrap

训练过程中,如果模型中的一个数字变成了NaN,则模型中的很多或所有其他数字最终都变成NaN。NaN是「NotaNumber」的缩写。

负类(negativeclass)

在二元分类中,一个类别是正类,另外一个是负类。正类就是我们要找的目标,负类是另外一种可能性。例如,医疗测试中的负类可能是「非肿瘤」,电子邮件分类器中的负类可能是「非垃圾邮件」。

神经网络(neuralnetwork)

该模型从大脑中获取灵感,由多个层组成(其中至少有一个是隐藏层),每个层包含简单的连接单元或神经元,其后是非线性。

神经元(neuron)

神经网络中的节点,通常输入多个值,生成一个输出值。神经元通过将激活函数(非线性转换)应用到输入值的加权和来计算输出值。

归一化(normalization)

将值的实际区间转化为标准区间的过程,标准区间通常是-1到+1或0到1。例如,假设某个特征的自然区间是800到6000。通过减法和分割,你可以把那些值标准化到区间-1到+1。参见缩放。

numpy

Python中提供高效数组运算的开源数学库。pandas基于numpy构建。

O

目标(objective)

算法尝试优化的目标函数。

离线推断(offlineinference)

生成一组预测并存储,然后按需检索那些预测。可与在线推断对照阅读。

one-hot编码(one-hotencoding)

一个稀疏向量,其中:

独热编码常用于表示有有限可能值集合的字符串或标识符。例如,假设一个记录了15000个不同品种的植物数据集,每一个用独特的字符串标识符来表示。作为特征工程的一部分,你可能将那些字符串标识符进行独热编码,每个向量的大小为15000。

一对多(one-vs.-all)

给出一个有N个可能解决方案的分类问题,一对多解决方案包括N个独立的二元分类器——每个可能的结果都有一个二元分类器。例如,一个模型将样本分为动物、蔬菜或矿物,则一对多的解决方案将提供以下三种独立的二元分类器:

在线推断(onlineinference)

按需生成预测。可与离线推断对照阅读。

运算(Operation/op)

TensorFlow图中的一个节点。在TensorFlow中,任何创建、控制或损坏张量的步骤都是运算。例如,矩阵乘法是一个把两个张量作为输入、生成一个张量作为输出的运算。

优化器(optimizer)

梯度下降算法的特定实现。TensorFlow的基类优化器是tf.train.Optimizer。不同的优化器(tf.train.Optimizer的子类)对应不同的概念,如:

你甚至可以想象NN-drivenoptimizer。

异常值(outlier)

与大多数值差别很大的值。在机器学习中,下列都是异常值:

异常值往往使模型训练中出现问题。

输出层(outputlayer)

神经网络的「最后」一层。这一层包含整个·模型所寻求的答案。

过拟合(overfitting)

创建的模型与训练数据非常匹配,以至于模型无法对新数据进行正确的预测。

P

pandas

一种基于列的数据分析API。很多机器学习框架,包括TensorFlow,支持pandas数据结构作为输入。参见pandas文档。

参数(parameter)

机器学习系统自行训练的模型的变量。例如,权重是参数,它的值是机器学习系统通过连续的训练迭代逐渐学习到的。可与超参数对照阅读。

参数服务器(ParameterServer/PS)

用于在分布式设置中跟踪模型参数。

参数更新(parameterupdate)

在训练过程中调整模型参数的操作,通常在梯度下降的单个迭代中进行。

偏导数(partialderivative)

一个多变量函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定。例如,f(x,y)对于x的偏导数就是f(x)的导数,y保持恒定。x的偏导数中只有x是变化的,公式中其他的变量都不用变化。

分区策略(partitioningstrategy)

在多个参数服务器中分割变量的算法。

性能(performance)

具有多种含义:

困惑度(perplexity)

对模型完成任务的程度的一种度量指标。例如,假设你的任务是阅读用户在智能手机上输入的单词的头几个字母,并提供可能的完整单词列表。该任务的困惑度(perplexity,P)是为了列出包含用户实际想输入单词的列表你需要进行的猜测数量。

困惑度和交叉熵的关系如下:

流程(pipeline)

机器学习算法的基础架构。管道包括收集数据、将数据放入训练数据文件中、训练一或多个模型,以及最终输出模型。

正类(positiveclass)

在二元分类中,有两种类别:正类和负类。正类是我们测试的目标。(不过必须承认,我们同时测试两种结果,但其中一种不是重点。)例如,医疗测试中正类可能是「肿瘤」,电子邮件分类器中的正类可能是「垃圾邮件」。可与负类对照阅读。

精度(precision)

分类模型的一种指标。准确率指模型预测正类时预测正确的频率。即:

预测(prediction)

模型在输入样本后的输出结果。

预测偏差(predictionbias)

揭示预测的平均值与数据集中标签的平均值的差距。

预制评估器(pre-madeEstimator)

预训练模型(pre-trainedmodel)

已经训练好的模型或模型组件(如嵌入)。有时,你将预训练嵌入馈送至神经网络。其他时候,你的模型自行训练嵌入,而不是依赖于预训练嵌入。

先验信念(priorbelief)

训练开始之前你对数据的信念。例如,L2正则化依赖于权重值很小且正常分布在0周围的信念。

Q

队列(queue)

实现队列数据结构的TensorFlow操作。通常在输入/输出(I/O)中使用。

R

秩(rank)

机器学习领域中包含多种含义的术语:

评分者(rater)

为样本提供标签的人,有时也叫「标注者」。

召回率(recall)

分类模型的一个指标,可以回答这个问题:模型能够准确识别多少正标签?即:

修正线性单元(RectifiedLinearUnit/ReLU)

一种具备以下规则的激活函数:

回归模型(regressionmodel)

一种输出持续值(通常是浮点数)的模型。而分类模型输出的是离散值,如「daylily」或「tigerlily」。

正则化(regularization)

对模型复杂度的惩罚。正则化帮助防止过拟合。正则化包括不同种类:

正则化率(regularizationrate)

一种标量级,用lambda来表示,指正则函数的相对重要性。从下面这个简化的损失公式可以看出正则化率的作用:

minimize(lossfunction+λ(regularizationfunction))

提高正则化率能够降低过拟合,但可能会使模型准确率降低。

表征

将数据映射到有用特征的过程。

受试者工作特征曲线(receiveroperatingcharacteristic/ROCCurve)

反映在不同的分类阈值上,真正类率和假正类率的比值的曲线。参见AUC。

根目录(rootdirectory)

指定放置TensorFlow检查点文件子目录和多个模型的事件文件的目录。

均方根误差(RootMeanSquaredError/RMSE)

均方误差的平方根。

S

Saver

负责存储模型检查点文件的TensorFlow对象。

缩放(scaling)

特征工程中常用的操作,用于控制特征值区间,使之与数据集中其他特征的区间匹配。例如,假设你想使数据集中所有的浮点特征的区间为0到1。给定一个特征区间是0到500,那么你可以通过将每个值除以500,缩放特征值区间。还可参见正则化。

scikit-learn

一种流行的开源机器学习平台。网址:www.scikit-learn.org

序列模型(sequencemodel)

输入具有序列依赖性的模型。例如,根据之前观看过的视频序列对下一个视频进行预测。

会话(session)

保持TensorFlow程序的状态(如变量)。

Sigmoid函数(sigmoidfunction)

把logistic或多项式回归输出(对数几率)映射到概率的函数,返回的值在0到1之间。sigmoid函数的公式如下:

其中σ在logistic回归问题中只是简单的:

在有些神经网络中,sigmoid函数和激活函数一样。

softmax

为多类别分类模型中每个可能的类提供概率的函数。概率加起来的总和是1.0。例如,softmax可能检测到某个图像是一只狗的概率为0.9,是一只猫的概率为0.08,是一匹马的概率为0.02。(也叫作fullsoftmax)。

稀疏特征(sparsefeature)

值主要为0或空的特征向量。比如,一个向量的值有1个1,、一百万个0,则该向量为稀疏向量。再比如,搜索查询中的单词也是稀疏向量:在一种语言中有很多可以用的单词,但给定的查询中只用了其中的一些。

可与稠密特征对照阅读。

平方损失(squaredloss)

线性回归中使用的损失函数(也叫作L2Loss)。该函数计算模型对标注样本的预测值和标签真正值之间差的平方。在平方之后,该损失函数扩大了不良预测的影响。即,平方损失比L1Loss对异常值(outlier)的反应更加强烈。

静态模型(staticmodel)

离线训练的模型。

稳态(stationarity)

步(step)

一个批量中的前向和后向评估。

步长(stepsize)

学习速率(learningrate)乘以偏导数的值,即梯度下降中的步长。

随机梯度下降(stochasticgradientdescent/SGD)

批量大小为1的梯度下降算法。也就是说,SGD依赖于从数据集中随机均匀选择出的一个样本,以评估每一步的梯度。

结构风险最小化(structuralriskminimization/SRM)

这种算法平衡两个目标:

摘要(summary)

在TensorFlow中,特定步计算的值或值的集合,通常用于跟踪训练过程中的模型指标。

监督式机器学习(supervisedmachinelearning)

利用输入数据及其对应标签来训练模型。监督式机器学习类似学生通过研究问题和对应答案进行学习。在掌握问题和答案之间的映射之后,学生就可以提供同样主题的新问题的答案了。可与非监督机器学习对照阅读。

合成特征(syntheticfeature)

不在输入特征中,而是从一个或多个输入特征中派生出的特征。合成特征的类型包括:

由归一化或缩放单独创建的特征不是合成特征。

T

张量(tensor)

TensorFlow项目的主要数据结构。张量是N维数据结构(N的值很大),经常是标量、向量或矩阵。张量可以包括整数、浮点或字符串值。

张量处理单元(TensorProcessingUnit,TPU)

优化TensorFlow性能的ASIC(application-specificintegratedcircuit,专用集成电路)。

张量形状(Tensorshape)

张量的元素数量包含在不同维度中。比如,[5,10]张量在一个维度中形状为5,在另一个维度中形状为10。

张量大小(Tensorsize)

张量包含的标量总数。比如,[5,10]张量的大小就是50。

TensorBoard

展示一个或多个TensorFlow项目运行过程中保存的摘要数据的控制面板。

TensorFlow

大型分布式机器学习平台。该术语还指TensorFlow堆栈中的基础API层,支持数据流图上的通用计算。

尽管TensorFlow主要用于机器学习,但是它也适用于要求使用数据流图进行数值运算的非机器学习任务。

TensorFlowPlayground

TensorFlowServing

帮助训练模型使之可部署到产品中的平台。

测试集(testset)

数据集的子集。模型经过验证集初步测试之后,使用测试集对模型进行测试。可与训练集和验证集对照阅读。

tf.Example

一种标准protocolbuffer,用于描述机器学习模型训练或推断的输入数据。

训练(training)

确定组成模型的完美参数的流程。

训练集(trainingset)

数据集子集,用于训练模型。可与验证集和测试集对照阅读。

真负类(truenegative,TN)

被模型正确地预测为负类的样本。例如,模型推断某封电子邮件不是垃圾邮件,然后该电邮真的不是垃圾邮件。

真正类(truepositive,TP)

被模型正确地预测为正类的样本。例如,模型推断某封电子邮件是垃圾邮件,结果该电邮真的是垃圾邮件。

真正类率(truepositiverate,TPrate)

召回率(recall)的同义词。即:

TruePositiveRate=TruePositives/(TruePositives+FalseNegatives)

真正类率是ROC曲线的y轴。

U

无标签样本(unlabeledexample)

包含特征但没有标签的样本。无标签样本是推断的输入。在半监督学习和无监督学习的训练过程中,通常使用无标签样本。

无监督机器学习(unsupervisedmachinelearning)

训练一个模型寻找数据集(通常是无标签数据集)中的模式。

无监督机器学习最常用于将数据分成几组类似的样本。例如,无监督机器学习算法可以根据音乐的各种属性聚类数据。用这种方式收集的数据可以作为其他机器学习算法(如音乐推荐服务)的输入。聚类在难以获取真正标签的情景中非常有用。例如,在反欺诈和反滥用的情景中,聚类可以帮助人类更好地理解数据。

无监督机器学习的另一个例子是主成分分析(principalcomponentanalysis,PCA)。如,将PCA应用于包含数百万购物车内容的数据集中时,就有可能发现有柠檬的购物车往往也有解酸剂。可与监督式机器学习对照阅读。

V

验证集(validationset)

数据集的一个子集(与训练集不同),可用于调整超参数。可与训练集和测试集对照阅读。

W

权重(weight)

线性模型中的特征系数,或者深度网络中的边缘。线性模型的训练目标是为每个特征确定一个完美的权重。如果权重为0,则对应的特征对模型而言是无用的。

THE END
1.train和offlinetrain需要交互的训练是online吗离线学习适用于处理大数据和复杂模型,需要所有训练数据在训练前可用,训练完成后模型才用于预测。在线学习则侧重实时性,数据以流式到达,模型会随新数据不断更新。两种方式常结合使用,如离线训练后在线微调。在线学习关注当前数据,离线学习则能看到全局。 摘要由CSDN通过智能技术生成 https://blog.csdn.net/qq_45104603/article/details/126052925
2.关于训练神经网路的诸多技巧Tricks(完全总结版)很多人都说训练神经网络和炼金术师炼药的过程相像,难以破解其中的黑盒子。其实不然,在训练的时候我们依然可以通过大量的技巧去最大化我们的训练效果,从而帮助我们的任务取得不错的精度,这些技巧是训练神经网络不可缺少的一环。 本文尽可能说明训练过程中所需要的各种小技巧,会有不完善的地方,限于篇幅每个点不会说很https://cloud.tencent.com/developer/article/2346565
3.如何构建高效的离线机器学习模型训练平台?袋鼠社区此外,离线训练还能够有效减少对网络带宽的依赖,提升训练的稳定性和效率。 二、离线机器学习模型训练平台的核心组成部分1. 硬件环境: 离线机器学习训练平台的硬件环境是基础,包括计算机硬件(CPU、GPU等)、存储设备(HDD、SSD)和网络设施等。合适的硬件配置对模型训练速度和性能起着至关重要的作用。比如,GPU在处理大型https://www.dtstack.com/bbs/article/15769
4.相比于离线训练,在线训练的好处有什么?问答离线训练毕竟使用的是 T-1 或者 T-2 的数据去做的,没有对线上实时产生的行为数据进行利用,对于数据的时效性利用相对较差。 比如说,有这样的一个场景,今天我的整个平台只对 14 岁以下的少女做某个运营活动,而平台上充斥了大量的年龄段的客户,整个平台的交互行为都变了,这个时候你的模型还是 T-1 去做的,将https://developer.aliyun.com/ask/446535
5.模型也可以上网课?!一文看懂服务型蒸馏训练方案同时由于Teacher模型可以弹性调度,不用担心高峰时线上实例被抢占造成的任务失败。相当于把teacher对训练卡的资源需求转移到了在线GPU卡上,在v100等离线训练资源受限的情况下,使用在线卡对训练进行加速,以节约宝贵的训练资源。 此外,在离线集群上,结合调度策略,还可以将Teacher模型部署到集群碎片资源,或者如k40等使用率https://www.thepaper.cn/newsDetail_forward_8071575
6.谁说RL智能体只能在线训练?谷歌发布离线强化学习新范式为了避免 distribution mismatch,强化学习的训练一定要在线与环境进行交互吗?谷歌的这项最新研究从优化角度,为我们提供了离线强化学习研究新思路,即鲁棒的 RL 算法在足够大且多样化的离线数据集中训练可产生高质量的行为。 为了避免 distribution mismatch,强化学习的训练一定要在线与环境进行交互吗?谷歌的这项最新研究从优化https://www.51cto.com/article/614512.html
7.深度学习模型在线训练排序策略离线排序模型华为云帮助中心为你分享云计算行业信息,包含产品介绍、用户指南、开发指南、最佳实践和常见问题等文档,方便快速查找定位问题与能力成长,并提供相关资料和解决方案。本页面关键词:深度学习模型 在线训练。https://support.huaweicloud.com/topic/985668-2-S
8.科学网—[转载]群视角下的多智能体强化学习方法综述基于学习(深度学习、强化学习)设计的迭代式问题求解方法是离线策略学习的基础范式。由于环境及对手的非平稳性,离线训练的蓝图策略通常很难直接运用于在线对抗。在线博弈对抗过程与离线利用模拟多次对抗学习博弈过程不同,博弈各方处于策略解耦合状态,与离线批(batch)式策略学习方法不同,在线博弈对抗策略的求解本质是一个流https://blog.sciencenet.cn/home.php?mod=space&uid=3472670&do=blog&id=1422698
9.蚂蚁金服核心技术:百亿特征实时推荐算法揭秘备注:弹性特征带来一个显著的优势:只要用足够强的L1稀疏性约束,在单机上就能调试任意大规模的特征训练,带来很多方便。我们的hashmap实现是KV化的,key是特征,value是vector的首地址。 离线训练优化 经过这样的改造后,在离线批量学习上,带来了以下变化: 在线训练优化 https://maimai.cn/article/detail?fid=1010621115&efid=mIQCHnkj0zjxlpygUmo5mg
10.构建容器镜像部署nnae软件(支持离线推理在线推理训练)本文档基于镜像树结构来构建容器镜像,具有可扩展性。 镜像树示意图如图1所示。 图1镜像树示意图 表1 昇腾基础镜像树说明 镜像名 说明 ascendbase-train 安装系统组件及python第三方依赖等。 ascend-train 安装深度学习引擎包nnae(支持离线推理、在线推理、训练)等。 https://www.hiascend.com/document/detail/zh/mindx-dl/2046/dluserguide/toolboxug/toolboxug_000121.html
11.机器学习术语表:机器学习基础知识MachineLearningGoogle动态模型(或在线模型)是一种模型, 。 动态训练(或在线训练)是训练 频繁或持续不断 动态推理(即在线推理)是 根据需求生成预测。 动态模型 #fundamentals 一个模型经常出现(甚至可能会持续) 重新训练。动态模型是一个“终身学习者”那个 适应不断演变的数据。动态模型也称为在线模型。 https://developers.google.cn/machine-learning/glossary/fundamentals?hl=zh-cn
12.基于Kmeans聚类的CSI室内定位AET对于单个天线对得到fin,对于m个天线的每个天线对使用Kmeans算法,得到训练向量: 2.2 在线定位阶段 在线定位阶段采用与离线训练阶段相同的方法提取到m个天线对的指纹: 将提取到的指纹与训练阶段建立的数据库中的指纹作比较,即将获取到的第i个天线对的指纹矩阵与数据库中的第i个天线对的指纹矩阵,进行两个指纹矩阵中任http://www.chinaaet.com/article/3000057028
13.粗排优化探讨得物技术离线在线一致性分析 待补充实际效果 四 样本设计 粗排相较于精排样本选择偏差(SSB)的问题更加严重,借鉴召回经验,可以通过适当采样减少偏差。采样设计的目的也是希望离线训练样本尽可能与线上分布一致。 样本选择方法 负样本可选范围: 曝光未点击样本; 全库除转化外样本; https://blog.itpub.net/70027824/viewspace-3000851/
14.推荐模型离线评测效果好,线上效果却不佳的原因推荐系统里非常常见,并且往往非常的隐蔽的一种数据分布不一致的情况被称之为冰山效应,也就是说离线训练用的是有偏的冰山上的数据,而在线上预估的时候,需要预测的是整个冰山的数据,包括大量冰面以下的数据!我们看下面这张图。左边是我们的Baseline,绿色的表示正样本,红色表示负样本,灰色部分表示线上由于推荐系统的“https://www.jianshu.com/p/34489b31c783
15.微软亚洲研究院解密:AISuphx是如何成为麻将十段的?科技当初始的手牌发到麻将AI手中时,通过模拟来调整离线训练好的策略,使其更适应这个给定的初始手牌。微软亚洲研究院的实验表明,相对麻将隐藏信息集的平均大小10的48+次方倍而言,模拟的次数不需要很大,pMCPA也并不需要为这一局手牌收集所有可能后续状态的统计数据。由于pMCPA是一种参数化的方法,所以微调更新后的策略可以帮https://www.whb.cn/zhuzhan/kjwz/20200412/340072.html
16.推荐算法中的在线学习和离线学习有何区别,各自的优缺点是什么在线学习和离线学习是推荐算法中常见的训练方式,各自有不同的优缺点。在实际应用中可以根据需求选择合适的方式或结合两者优势。https://www.mbalib.com/ask/question-ec5c1bbee149c6534d0a725ffdb15235.html
17.2019机器之心人工智能年度奖项正式公布:关注创业先锋,聚焦产品2019 年,天泽智云发布无忧机加解决方案,基于 CPS 信息物理系统架构,融合高频振动数据和加工运行数据,结合机理、数据的智能分析,离线训练算法模型,在线评估刀具健康状态,实现刀具失效预警、刀具寿命预测和主轴健康管理。截止 2019 年 12 月底,已服务 2 家机床厂商,为其增强产品竞争力,提升服务价值;助力 4 家制造商将https://www.zhuanzhi.ai/document/2abfb47db9cd9ab70b4144f329e147b8