重磅完备的AI学习路线,最详细的资源整理!

中文版,对高等数学、线性代数、概率论与数理统计三门课的公式做了总结

2)斯坦福大学机器学习的数学基础.pdf

原版英文材料,非常全面,建议英语好的同学直接学习这个材料

推荐教材

相比国内浙大版和同济版的数学教材,通俗易懂,便于初学者更好地奠定数学基础

深入浅出统计学

商务与经济统计

入门人工智能领域,推荐Python这门编程语言。

1)Python安装:

关于python安装包,我推荐下载Anaconda,Anaconda是一个用于科学计算的Python发行版,支持Linux,Mac,Windows系统,提供了包管理与环境管理的功能,可以很方便地解决多版本Python并存、切换以及各种第三方包安装问题。

IDE:推荐使用pycharm,社区版免费

安装教程:

Anaconda+Jupyternotebook+Pycharm:

Ubuntu18.04深度学习环境配置(CUDA9+CUDNN7.4+TensorFlow1.8):

2)python入门的资料推荐

a.廖雪峰python学习笔记

b.python入门笔记

作者李金,这个是jupyternotebook文件,把python的主要语法演示了一次,值得推荐。

c.南京大学python视频教程

这个教程非常值得推荐,python主要语法和常用的库基本涵盖了。

看完这三个资料,python基本入门了,可以使用scikit-learn等机器学习库来解决机器学习的

问题了。

3)补充

代码规范:

numpy练习题:

pandas练习题:

《利用python进行数据分析》

这本书含有大量的实践案例,你将学会如何利用各种Python库(包括NumPy,Pandas、Matplotlib以及IPython等)高效地解决各式各样的数据分析问题。如果把代码都运行一次,基本上就能解决数据分析的大部分问题了。

这绝对是机器学习入门的首选课程,没有之一!即便你没有扎实的机器学习所需的扎实的概率论、线性代数等数学基础,也能轻松上手这门机器学习入门课,并体会到机器学习的无穷趣味。

课程主页

课程完整思维导图:

中文视频

网易云课堂搬运了这门课,并由黄海广等人翻译了中文字幕。

观看地址:

中文笔记及作业代码

吴恩达在斯坦福教授的机器学习课程CS229与吴恩达在Coursera上的《MachineLearning》相似,但是有更多的数学要求和公式的推导,难度稍难一些。该课程对机器学习和统计模式识别进行了广泛的介绍。主题包括:监督学习(生成/鉴别学习、参数/非参数学习、神经网络、支持向量机);无监督学习(聚类、降维、核方法);学习理论(偏差/方差权衡;VC理论;大幅度利润);强化学习和自适应控制。本课程还将讨论机器学习的最新应用,如机器人控制、数据挖掘、自主导航、生物信息学、语音识别以及文本和Web数据处理。

这份给力的资源贡献者是一名斯坦福的毕业生ShervineAmidi。作者关于CS229整理了一份超级详细的速查表

台湾大学林轩田老师的《机器学习基石》课程由浅入深、内容全面,基本涵盖了机器学习领域的很多方面。其作为机器学习的入门和进阶资料非常适合。而且林老师的教学风格也很幽默风趣,总让读者在轻松愉快的氛围中掌握知识。这门课比Ng的《MachineLearning》稍难一些,侧重于机器学习理论知识。

《机器学习技法》课程是《机器学习基石》的进阶课程。主要介绍了机器学习领域经典的一些算法,包括支持向量机、决策树、随机森林、神经网络等等。难度要略高于《机器学习基石》,具有很强的实用性。

周志华的《机器学习》被大家亲切地称为“西瓜书”。这本书非常经典,讲述了机器学习核心数学理论和算法,适合有作为学校的教材或者中阶读者自学使用,入门时学习这本书籍难度稍微偏高了一些。

这本书配合《机器学习实战》这本书,效果很好!

李航的这本《统计学习方法》堪称经典,包含更加完备和专业的机器学习理论知识,作为夯实理论非常不错。

在经过前面的学习之后,这本《Scikit-Learn与TensorFlow机器学习实用指南》非常适合提升你的机器学习实战编程能力。这本书分为两大部分,第一部分介绍机器学习基础算法,每章都配备Scikit-Learn实操项目;第二部分介绍神经网络与深度学习,每章配备TensorFlow实操项目。如果只是机器学习,可先看第一部分的内容。

比赛是提升自己机器学习实战能力的最有效的方式,首选Kaggle比赛。

Scikit-Learn作为机器学习一个非常全面的库,是一份不可多得的实战编程手册。

在吴恩达开设了机器学习课程之后,发布的《DeepLearning》课程也备受好评,吴恩达老师的课程最大的特点就是将知识循序渐进的传授给你,是入门学习不可多得良好视频资料。整个专题共包括五门课程:01.神经网络和深度学习;02.改善深层神经网络-超参数调试、正则化以及优化;03.结构化机器学习项目;04.卷积神经网络;05.序列模型。

之前编写过吴恩达老师机器学习个人笔记黄海广博士带领团队整理了中文笔记

吴恩达老师在课程中提到了很多优秀论文,黄海广博士整理如下:

吴恩达深度学习课程,包含课程的课件、课后作业和一些其他资料:

说到深度学习的公开课,与吴恩达《DeepLearning》并驾齐驱的另一门公开课便是由Fast.ai出品的《程序员深度学习实战》。这门课最大的特点便是“自上而下”而不是“自下而上”,是绝佳的通过实战学习深度学习的课程。

B站地址(英文字幕):

CSDN地址(2017版中文字幕):

英文笔记原文:

由ApacheCN组织进行的中文翻译:

斯坦福的深度学习课程CS230在4月2日刚刚开课,对应的全套PPT也随之上线。从内容来看,今年的课程与去年的差别不大,涵盖了CNNs,RNNs,LSTM,Adam,Dropout,BatchNorm,Xavier/Heinitialization等深度学习的基本模型,涉及医疗、自动驾驶、手语识别、音乐生成和自然语言处理等领域。

Datawhale整理了该门课程的详细介绍及参考资料

本书是入门深度学习领域的极佳教材,主要介绍了神经网络与深度学习中的基础知识、主要模型(前馈网络、卷积网络、循环网络等)以及在计算机视觉、自然语言处理等领域的应用。

完成以上学习后,想要更加系统的建立深度学习的知识体系,阅读《深度学习》准没错。该书从浅入深介绍了基础数学知识、机器学习经验以及现阶段深度学习的理论和发展,它能帮助人工智能技术爱好者和从业人员在三位专家学者的思维带领下全方位了解深度学习。

《深度学习》通常又被称为花书,深度学习领域最经典的畅销书。由全球知名的三位专家IanGoodfellow、YoshuaBengio和AaronCourville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。该书被大众尊称为“AI圣经”。

该书由众多网友众包翻译,电子版在以下地址获得:

当你看完了所有的视频,研习了AI圣经,一定充满了满脑子问号,此时不如来深度学习面试中常见的500个问题。

DeepLearning-500-questions,作者是川大的一名优秀毕业生谈继勇。该项目以深度学习面试问答形式,收集了500个问题和答案。内容涉及了常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题,该书目前尚未完结,却已经收获了Github2.4wstars。

进行深度学习怎么离得开TensorFlow

PyTorch是进行深度学习的另一个主流框架

该课程对强化学习领域做了相当详尽的讲解,其主要内容有:马尔可夫决策过程(强化学习的基础理论)、动态规划、免模型预测(蒙特卡洛学习、时序差分学习和λ时序差分强化学习)、免模型控制(On-policyLearning和Off-policyLearning)、价值函数的近似表示、策略梯度算法、集成学习与计划、探索与利用以及实例演示。

B站地址(中文字幕):

课程原地址:

课程PPT:

课程笔记:

DavidSilver的课程虽然内容详尽,但前沿的很多内容都没有被包括在内,这时,台大李宏毅的《深度强化学习》就是学习前沿动态的不二之选。李宏毅老师讲课非常幽默风趣,并且浅显易懂,而且对于大多数初学者来说,中文教学可谓是福音。当然,这门课程也有着没有对理论知识做太多详尽地展开、内容主要围绕着深度强化学习进行等缺陷,但这并不妨碍其成为初学者们的首选之一。

该课程上线于2018年,基本涵盖了当年的前沿技术,其主要内容有:策略梯度算法(DavidSilver的课程中提到的算法大多都在这部分的内容中提到,但其主要是从神经网络的角度出发)、Q-learning(这部分涵盖了大量的Q-learning优化的讲解)、Actor-Critic、SparseReward和ImitationLearning。

Arxiv机器学习最新论文检索,主页地址:

AndrejKarpathy开发了ArxivSanityPreserver,帮助分类、搜索和过滤特征,主页地址:

这个网站叫做Browsestate-of-the-art。它将ArXiv上的最新深度学习论文与GitHub上的开源代码联系起来。该项目目前包含了651个排行榜,1016个深度学习任务,795个数据集,以及重磅的10257个含复现代码的优秀论文。简直就是一个寻找论文和代码的利器。它将1016个深度学习任务分成了16大类,涉及了深度学习的各个方面。

主页地址:

举两个例子:

这份资源收集了AI领域从2013-2018年所有的论文,并按照在GitHub上的标星数量进行排序。GitHub项目地址:

如果你是深度学习领域的新手,你可能会遇到的第一个问题是“我应该从哪篇论文开始阅读?”下面是一个深入学习论文的阅读路线图!GitHub项目地址:

这份深度学习论文阅读路线分为三大块:

1DeepLearningHistoryandBasics

2DeepLearningMethod

3Applications

GitHub项目地址:

机器人方面,有CoRL(学习)、ICAPS(规划,包括但不限于机器人)、ICRA、IROS、RSS;对于更理论性的研究,有AISTATS、COLT、KDD。

自然语言处理(NLP,NaturalLanguageProcessing)是研究计算机处理人类语言的一门技术,目的是弥补人类交流(自然语言)和计算机理解(机器语言)之间的差距。NLP包含句法语义分析、信息抽取、文本挖掘、机器翻译、信息检索、问答系统和对话系统等领域。

①CS224n斯坦福深度自然语言处理课

②自然语言处理-DanJurafsky和ChrisManning

①Python自然语言处理

中英文版

②自然语言处理综论

③统计自然语言处理基础

计算机视觉的应用

无人驾驶

无人安防

人脸识别

车辆车牌识别

以图搜图

VR/AR

3D重构

无人机

医学图像分析

其他

StanfordCS223B

比较适合基础,适合刚刚入门的同学,跟深度学习的结合相对来说会少一点,不会整门课讲深度学习,而是主要讲计算机视觉,方方面面都会讲到

李飞飞:CS231n课程

1)入门学习:《ComputerVision:Models,LearningandInference》

2)经典权威的参考资料:《ComputerVision:AlgorithmsandApplications》

3)理论实践:《OpenCV3编程入门》

推荐系统就是自动联系用户和物品的一种工具,它能够在信息过载的环境中帮助用户发现令他们感兴趣的信息,也能将信息推送给对它们感兴趣的用户。推荐系统属于资讯过滤的一种应用。

这个系列由4门子课程和1门毕业项目课程组成,包括推荐系统导论,最近邻协同过滤,推荐系统评价,矩阵分解和高级技术等。

《推荐系统实践》(项亮著)

《推荐系统》(DietmarJannach等著,蒋凡译)

《用户网络行为画像》(牛温佳等著)

《RecommenderSystemsHandbook》(PaulB·Kantor等著)

LibRec

LibRec是一个Java版本的覆盖了70余个各类型推荐算法的推荐系统开源算法库,由国内的推荐系统大牛郭贵冰创办,目前已更新到2.0版本,它有效地解决了评分预测和物品推荐两大关键的推荐问题。

LibMF

C++版本开源推荐系统,主要实现了基于矩阵分解的推荐系统。针对SGD(随即梯度下降)优化方法在并行计算中存在的lockingproblem和memorydiscontinuity问题,提出了一种矩阵分解的高效算法FPSGD(FastParallelSGD),根据计算节点的个数来划分评分矩阵block,并分配计算节点。

SurPRISE

一个Python版本的开源推荐系统,有多种经典推荐算法

NeuralCollaborativeFiltering

神经协同过滤推荐算法的Python实现

Crab

基于Python开发的开源推荐软件,其中实现有item和user的协同过滤

MovieLen

MovieLens数据集中,用户对自己看过的电影进行评分,分值为1~5。MovieLens包括两个不同大小的库,适用于不同规模的算法。小规模的库是943个独立用户对1682部电影作的10000次评分的数据;大规模的库是6040个独立用户对3900部电影作的大约100万次评分。适用于传统的推荐任务

Douban

Douban是豆瓣的匿名数据集,它包含了12万用户和5万条电影数据,是用户对电影的评分信息和用户间的社交信息,适用于社会化推荐任务。

BookCrossing

这个数据集是网上的Book-Crossing图书社区的278858个用户对271379本书进行的评分,包括显式和隐式的评分。这些用户的年龄等人口统计学属性(demographicfeature)都以匿名的形式保存并供分析。这个数据集是由Cai-NicolasZiegler使用爬虫程序在2004年从Book-Crossing图书社区上采集的。

JesterJoke

Netflix

这个数据集来自于电影租赁网址Netflix的数据库。Netflix于2005年底公布此数据集并设立百万美元的奖金(netflixprize),征集能够使其推荐系统性能上升10%的推荐算法和架构。这个数据集包含了480189个匿名用户对大约17770部电影作的大约10亿次评分。

这个数据集包括20个新闻组的用户浏览数据。最新的应用是在KDD2007上的论文。新闻组的内容和讨论的话题包括计算机技术、摩托车、篮球、政治等。用户们对这些话题进行评价和反馈。

UCI库

UCI库是Blake等人在1998年开放的一个用于机器学习和评测的数据库,其中存储大量用于模型训练的标注样本,可用于推荐系统的性能测试数据。

今日头条推荐系统机制介绍,面向内容创作者

3分钟了解今日头条推荐系统原理

facebook是如何为十亿人推荐好友的

Netflix的个性化和推荐系统架构

《信用风险评分卡研究——基于SAS的开发与实施》

(2)特征准备:原始特征、衍生变量

(3)数据清洗:根据业务需求对缺失值或异常值等进行处理

(4)特征筛选:根据特征的IV值(特征对模型的贡献度)、PSI(特征的稳定性)来进行特征筛选,IV值越大越好(但是一个特征的IV值超过一定阈值可能要考虑是否用到未来数据),PSI越小越好(一般建模时取特征的PSI小于等于0.01)

(5)对特征进行WOE转换,即对特征进行分箱操作,注意在进行WOE转换时要注重特征的可解释性

(6)建立模型,在建立模型过程中可根据模型和变量的统计量判断模型中包含和不包含每个变量时的模型质量来进行变量的二次筛选。

知识图谱是一种结构化数据的处理方法,它涉及知识的提取、表示、存储、检索等一系列技术。从渊源上讲,它是知识表示与推理、数据库、信息检索、自然语言处理等多种技术发展的融合。

构建kg首先需要解决的是数据,知识提取是要解决结构化数据生成的问题。我们可以用自然语言处理的方法,也可以利用规则。

正则表达式(RegularExpression,regex)是字符串处理的基本功。数据爬取、数据清洗、实体提取、关系提取,都离不开regex。

推荐资料入门:

推荐资料进阶:

分词也是后续所有处理的基础,词性(PartofSpeech,POS)就是中学大家学过的动词、名词、形容词等等的词的分类。一般的分词工具都会有词性标注的选项。

推荐资料:

使用序列生出模型,主要是标记出三元组中subject及object的起始位置,从而抽取信息。

使用seq2seq端到端的模型,主要借鉴文本摘要的思想,将三元组看成是非结构化文本的摘要,从而进行抽取,其中还涉及Attention机制。

知识表示(KnowledgeRepresentation,KR,也译为知识表现)是研究如何将结构化数据组织,以便于机器处理和人的理解的方法。

需要熟悉下面内容:

需要熟悉常见的图数据库

需要熟悉常见的检索技术

由知名开源平台,AI技术平台以及领域专家:ApacheCN,Datawhale,AI有道和黄海广博士联合整理贡献。

参与名单:

ApacheCN:片刻,李翔宇,飞龙,王翔

Datawhale:范晶晶,马晶敏,李碧涵,李福,光城,居居,康兵兵,郑家豪

THE END
1.DeepL博客我们将为你更新我们的想法&创新为DeepL Voice 欢呼:即时语音翻译 终于等到了 DeepL Voice。从在线会议到面对面交流,了解实时、安全的人工智能语音翻译如何为您的业务带来变革。 作者:DeepL Team 2024年9月11日 人工智能通信工具推动零售业增长,实现全球成功 立即通过 DeepL 的《零售业管理指南》,了解如何实现全球业务的飞跃式增长。 https://www.deepl.com/blog
2.论文翻译DeepLearningdeeplearning学术写作翻译【论文翻译】Deep Learning Yann LeCun? Yoshua Bengio? Geoffrey Hinton 深度学习 Yann LeCun? Yoshua Bengio? Geoffrey Hinton Abstract Deep learning allows computational models that are composed of multipleprocessinglayers to learn representations of data with multiple levels of abstraction. These https://blog.csdn.net/diaokui2312/article/details/107746725
3.DeepLearning教程翻译米罗西非常激动地宣告,Stanford 教授 Andrew Ng 的 Deep Learning 教程,于今日,2013年4月8日,全部翻译成中文。这是中国屌丝军团,从2月20日战役打响之日,经过 50 天的团结奋战,取得的全面彻底的胜利。 此次战役的巨大胜利,之所以令人激动,有三方面的原因。 https://www.cnblogs.com/zhehan54/p/7083402.html
4.Bengio授权北京大学张志华老师团队负责翻译的《DeepLearningDeep Learning 中文翻译 就经过3多个月,我们终于完成了翻译草稿。当然这是草稿中的草稿,我们会不断改进,就像梯度下降一样,要迭代好几轮才能找的一个不错的解。 目前的版本是直译版,尽可能地保留原书中的每一个字。 如 Inventors have long dreamed of creating machines that think. This desire dates back tohttp://www.360doc.com/content/16/1222/21/20558639_616920451.shtml
5.[DeeplearningAI笔记]序列模型3.6Bleu得分/机器翻译得分指标即如果机器翻译的长度大于人工翻译输出的长度,BP=1,而其他情况下 BP 的定义会遵从一个式子,从而减小 Bleu 得分的值。 Bleu 得分是一个单一实数评价指标,其在机器翻译和图片描述中应用广泛,用以评价机器生成的语句和实际人工生成的结果是否相近。 参考资料 https://cloud.tencent.com/developer/article/1679650
6.2神经网络与深度学习(NeuralNetworksandDeepLearning)《神经网络与深度学习》 NeuralNetworksandDeepLearning https://nndl.github.io/ 邱锡鹏 xpqiu@ 2020 年3 月7 日 序 很高兴为邱锡鹏教授的《神经网络与深度学习》一书写个序. 近年来由于阿尔法围棋战胜人类顶级高手新闻的轰动效应,让人工智能一 下子进入了寻常百姓家,成为家喻户晓的热词. 阿尔法围棋之所以能取得https://max.book118.com/html/2021/0710/8060137027003120.shtm
7.GitHubexacity/deeplearningbookDeep Learning 中文翻译 在众多网友的帮助和校对下,中文版终于出版了。尽管还有很多问题,但至少90%的内容是可读的,并且是准确的。 我们尽可能地保留了原书Deep Learning中的意思并保留原书的语句。 然而我们水平有限,我们无法消除众多读者的方差。我们仍需要大家的建议和帮助,一起减小翻译的偏差。 https://github.com/exacity/deeplearningbook-chinese/
8.《DeepLearning》中文印前版开放下载,让我们向译者致敬机器之心在众多网友的帮助和校对下,草稿慢慢变成了初稿。尽管还有很多问题,但至少 90% 的内容是可读的,并且是准确的。我们尽可能地保留了原书 Deep Learning 中的意思并保留原书的语句。 然而我们水平有限,我们无法消除众多读者的方差。我们仍需要大家的建议和帮助,一起减小翻译的偏差。 https://www.jiqizhixin.com/article/2647
9.完整的深度学习论文导引https://github.com/songrotek/Deep-Learning-Papers-Reading-Roadmap 深度学习基础及历史 1.0书 [0]深度学习圣经★★★ 本吉奥,Yoshua,Ian J. Goodfellow和Aaron Courville。“深入学习”。麻省理工学院出版社(2015年)。 https://github.com/HFTrader/DeepLearningBook/raw/master/DeepLearningBook.pdf 1.1报告https://www.douban.com/note/632733952/
10.deeplearningai官网,专注于人工智能领域的在线课程学习平台《神经网络与深度学习》(Neural Networks and Deep Learning):由 deeplearning.ai 提供的免费课程,介绍了神经网络和深度学习的基本概念和原理。 《深度学习入门:基于Python的实践》(Deep Learning for Coders):由 fast.ai 提供的课程,着重于以实践为导向的深度学习入门,帮助学习者快速掌握深度学习的实际应用。 https://feizhuke.com/sites/deeplearning-ai.html
11.科学网—综述:自主式水下机器人的路径规划算法Deep Learning Based Hand Gesture Recognition and UAV Flight Controls Bin Hu, Jiacun Wang. http://www.ijac.net/en/article/doi/10.1007/s11633-019-1194-7 https://link.springer.com/article/10.1007/s11633-019-1194-7 中文导读: 美国蒙莫斯大学:基于深度学习的手势识别及无人机控制 https://blog.sciencenet.cn/blog-749317-1240442.html
12.DeepLearning(吴恩达)深度学习概论第一周 神经网络导论(Introduction to Deep Learning) 1.2 什么是神经网络(What ) 由例子引入:房子价格的估计 简单的神经网络:由一个神经元组成,输入x,经过神经元,输出y ReLU函数(Rectified Linear Unit):线性整流函数 ,作为神经元的**函数。 基本的神经网络:通过输入不同的特征(x1,x2,x3,x4),通过神经网络,https://www.pianshen.com/article/44731049011/
13.数据驱动软测量深度学习调研(QingqiangSunandZhiqiangGeA Survey on Deep Learning for Data-driven Soft Sensors (Qingqiang Sun and Zhiqiang Ge, Senior Member, IEEE) 本文是来自浙江大学葛志强教授团队21年的一篇关于深度学习软测量的综述,文章详细总结了当前深度学习在软测量领域的各项工作以及未来的研究热点及展望。 https://www.jianshu.com/p/95f3d67d40f9
14.什么是深度学习(DeepLearning)深度学习(Deep Learning)是机器学习的一个子集,而机器学习是人工智能的一个分支,它使计算机能够从数据中学习并执行通常需要人类智能才能完成的任务。深度学习使用人工神经网络,一种受人脑结构和功能启发的算法,可以从大量数据中学习并进行预测或分类。 深度学习的工作原理 https://www.tuidog.com/8481.html
15.DeepLearningDataSynthesisfor5GChannelEstimationsimParameters = hDeepLearningChanEstSimParameters(); carrier = simParameters.Carrier; pdsch = simParameters.PDSCH; Create a TDL channel model and set channel parameters. To compare different channel responses of the estimators, you can change these parameters later. channel = nrTDLChannel; channelhttps://www.mathworks.com/help/5g/ug/deep-learning-data-synthesis-for-5g-channel-estimation.html
16.哪五本机器学习的免费电子书,最受KDnuggets读者喜爱?雷峰网No.4 《深度学习》(Deep Learning) 该书由 Goodfellow、Bengio 和 Courville 一同合著,很快就要出版,不过在官网上有免费的电子版本。这本书的目标读者是学习机器学习专业的本科生及研究生,或是那些已经开始进军深度学习及人工智能产业的人。如果你是一名缺乏机器学习或统计学背景的软件工程师,但希望快速入门并在工作https://m.leiphone.com/category/ai/zmZZQlszC88HtL7e.html
17.学术长安华山论剑:“深度学习与大数据感知”国际研讨会专家观点对传统的解决方法中的种种问题,刘康老师指出“我们可以看到,基于Deep Learning的技术用分布式的知识表示形式能够有效改善传统符号处理中的语义鸿沟问题,而基于Deep Learning的端到端的知识问答系统能使得复杂的问答过程可学习,同时基于深度学习的文本生成是完成自然问答的有效途径。”至于基于深度学习的知识问答还存在的问题https://see.xidian.edu.cn/html/news/8904.html
18.最强通用棋类AI,AlphaZero强化学习算法解读Recall that systems like DeepBlue would rely on a human-defined “evaluation function”, which would take as an input the board state and output the “value” of the state. Nowadays, it’s extremely easy for DeepLearning models to take as an input an image and classify it as a dog orhttps://www.flyai.com/article/770
19.8个学习AI的网站(免费自学人工智能必备)学吧导航DeepLearningAI网站也是由人工智能和机器学习领域的权威吴恩达教授创建的在线学习平台,该网站提供与深度学习相关的各种课程和资源,深度学习是机器学习的一个子领域,专注于人工神经网络和深度神经网络。课程设计为初学者和有经验的实践者都可以使用,分为入门、中级、高级三个层次,涵盖一系列与深度学习有关的主题,包括神经https://www.xue8nav.com/2090.html
20.时代周刊揭晓全球100位AI人物!多位华人上榜AI领袖吴恩达(DeepLearning.AI创始人) 早在2012年,斯坦福大学教授吴恩达(Andrew Ng)向谷歌领导层提交了一份提案。他认为,谷歌应该利用大量的计算能力,在海量数据上训练神经网络,这是一种受大脑结构启发的人工智能系统。 他认为,这样有可能创造出通用人工智能(AGI)。十年前,这种讨论话题可能会给你贴上怪人的标签。吴恩达表示http://www.bianews.com/news/details?id=163787
21.15个开源的顶级人工智能工具51CTO博客Deeplearning4j是一个 java 虚拟机(JVM)的开源深度学习库。它运行在分布式环境并且集成在 Hadoop 和 Apache Spark 中。这使它可以配置深度神经网络,并且它与 Java、Scala 和 其他 JVM 语言兼容。 这个项目是由一个叫做 Skymind 的商业公司管理的,它为这个项目提供支持、培训和一个企业的发行版。 https://blog.51cto.com/u_16161240/6655120
22.全球AI网站汇总思维导图模板DeepAI DeepAI 提供了一套使用 AI 来增强您的创造力的工具。为天生具有创造力的人类提供的人工智能人民网AIGC-X 传播内容认知全国重点实验室、中国科学技术大学、合肥综合性国家科学中心人工智能研究院该工具在一个易于使用的应用程序中提供自动字幕、字幕翻译、配音、AI画外音、录音和文本生成。 httpshttps://www.processon.com/view/6459dd33b32d8e579cd939cc
23.15款热门的开源人工智能软件控件新闻它的过人之处在于:无论是只有CPU工作,还是单科GPU,或是或多颗GPU,亦或是多台机器配备多颗GPU工作,它的性能都十分优秀。虽然微软主要用它进行语音识别的研究,但它还可以进行机器翻译、图像识别、图像抓取、文本处理、语言识别与语言建模等工作。 3.Deeplearning4jhttps://www.evget.com/article/2016/9/18/24919.html
24.RegressionandClassificationCourse(DeepLearning.AI)Learn the fundamentals of machine learning with Andrew Ng in this updated 3-course Specialization by DeepLearning.AI and Stanford Online. Build and train models using Python, NumPy, and scikit-learn for real-world AI applications. Ideal for beginners.https://www.coursera.org/learn/machine-learning
25.Python实现简单的机器翻译模型希望对初入NLP/DeepLearning的童鞋有所帮助~ 废话不多说,直接进入正题~~~ 相关文件 百度网盘下载链接:https://pan.baidu.com/s/1y3KcMboz_xZJ9Afh5nRkUw 密码: qvhd 参考文献 官方英文教程链接: http://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html https://m.w3cschool.cn/article/7456423.html
26.实践NLP领域的Transformer在机器翻译上的应用更多CV和NLP中的transformer模型(BERT、ERNIE、ViT、DeiT、Swin Transformer等)、深度学习资料,请参考:awesome-DeepLearning 更多NLP应用模型(BERT系列等)请参考:PaddleNLP 2. Transformer 原理解读 Transformer 是论文 Attention Is All You Need 中提出的用以完成机器翻译(Machine Translation)等序列到序列(Seq2Seq)学习https://aistudio.baidu.com/aistudio/projectdetail/2311016