全网最全AI资源合集——大神,视频,博客,论文书籍...都在这儿了!

2000年早期,RobbieAllen在写一本关于网络和编程的书的时候,深有感触。他发现,互联网很不错,但是资源并不完善。那时候,博客已经开始流行起来。但是,Youtube还不是很普遍,Quora、Twitter和播客同样用者甚少。

在他转向人工智能和机器学习10年过后,局面发生了天翻地覆的变化:网上资源非相当丰富,以至于很多人出现了选择困难,不知道该从哪里开始(和停止)学习!

资源目录:

□知名研究者

□研究机构

□视频课程

□YouTube

□博客

□媒体作家

□书籍

□Quora主题栏

□Reddit

□Github库

□播客

□实事通讯媒体

□会议

□论文

研究者

大多数知名的人工智能研究者在网络上的曝光率还是很高的。下面列举了20位知名学者,以及他们的个人网站链接,维基百科链接,推特主页,Google学术主页,Quora主页。他们中相当一部分人在Reddit或Quora上面参与了问答。

■SebastianThrun

个人官网:

Wikipedia:

Twitter:

GoogleScholar:

Quora:

RedditAMA:

■YannLeCun

■NandodeFreitas

■AndrewNg

■DaphneKoller

QuoraSession:

■AdamCoates

■JürgenSchmidhuber

■GeoffreyHinton

■TerrySejnowski

■MichaelJordan

■PeterNorvig

■YoshuaBengio

■InaGoodfellow

■AndrejKarpathy

■RichardSocher

Interview:

■DemisHassabis

■ChristopherManning

■Fei-FeiLi

TedTalk:

■FranoisChollet

■DanJurafsky

■OrenEtzioni

机构

网络上有大量的知名机构致力于推进人工智能领域的研究和发展。

以下列出的是同时拥有官方网站/博客和推特账号的机构。

■OpenAI

■DeepMind

■GoogleResearch

■AWSAI

■FacebookAIResearch

■MicrosoftResearch

■BaiduResearch

■IntelAI

■AI2

■PartnershiponAI

视频课程

以下列出的是一些免费的视频课程和教程。

■Coursera—MachineLearning(AndrewNg):

■Coursera—NeuralNetworksforMachineLearning(GeoffreyHinton):

■Udacity—IntrotoMachineLearning(SebastianThrun):

■Udacity—MachineLearning(GeorgiaTech):

■Udacity—DeepLearning(VincentVanhoucke):

■MachineLearning(mathematicalmonk):

■PracticalDeepLearningForCoders(JeremyHoward&RachelThomas):

■StanfordCS231n—ConvolutionalNeuralNetworksforVisualRecognition(Winter2016):

■StanfordCS224n—NaturalLanguageProcessingwithDeepLearning(Winter2017):

■OxfordDeepNLP2017(PhilBlunsometal.):

■ReinforcementLearning(DavidSilver):

■PracticalMachineLearningTutorialwithPython(sentdex):

YouTube

以下,我列举了一些YoutTube频道和用户,它们的主要内容是人工智能或者机器学习。这里按照受欢迎程度列举如下:

■sentdex(225Ksubscribers,21Mviews):

■ArtificialIntelligenceA.I.(7Mviews):

■SirajRaval(140Ksubscribers,5Mviews):

■TwoMinutePapers(60Ksubscribers,3.3Mviews):

■DeepLearning.TV(42Ksubscribers,1.7Mviews):

■DataSchool(37Ksubscribers,1.8Mviews):

■MachineLearningRecipeswithJoshGordon(324Kviews):

■ArtificialIntelligence—Topic(10Ksubscribers):

■AllenInstituteforArtificialIntelligence(AI2)(1.6Ksubscribers,69Kviews):

■MachineLearningatBerkeley(634subscribers,48Kviews):

■UnderstandingMachineLearning—ShaiBen-David(973subscribers,43Kviews):

■MachineLearningTV(455subscribers,11Kviews):

博客

■iamtrask

■ChristopherOlah

■TopBots

■WildML

■Distill

■MachineLearningMastery

■FastML

■AdventuresinNI

■SebastianRuder

■UnsupervisedMethods

■Explosion

■TimDettwers

■Whentreesfall...

■ML@B

媒体作家

以下是一些人工智能领域方向顶尖的媒体作家。

■RobbieAllen:

■ErikP.M.Vermeulen:

■FrankChen:

■azeem:

■SamDeBrule:

■DerrickHarris:

■YitaekHwang:

■samim:

■PaulBoutin:

■MariyaYao:

■RobMay:

■AvinashHindupur:

书籍

以下列出的是关于机器学习、深度学习和自然语言处理的书。这些书都是免费的,可以通过网络获取或者下载。

——机器学习

■UnderstandingMachineLearningFromTheorytoAlgorithms:

■MachineLearningYearning:

■ACourseinMachineLearning:

■MachineLearning:

■NeuralNetworksandDeepLearning:

■DeepLearningBook:

■ReinforcementLearning:AnIntroduction:

■ReinforcementLearning:

——自然语言处理

■SpeechandLanguageProcessing(3rded.draft):

■NaturalLanguageProcessingwithPython:

■AnIntroductiontoInformationRetrieval:

——数学

■IntroductiontoStatisticalThought:

■IntroductiontoBayesianStatistics:

■IntroductiontoProbability:

■ThinkStats:ProbabilityandStatisticsforPythonprogrammers:

■TheProbabilityandStatisticsCookbook:

■LinearAlgebra:

■LinearAlgebraDoneWrong:

■LinearAlgebra,TheoryAndApplications:

■MathematicsforComputerScience:

■Calculus:

■CalculusIforComputerScienceandStatisticsStudents:

Quora

■Computer-Science(5.6Mfollowers):

■Machine-Learning(1.1Mfollowers):

■Artificial-Intelligence(635Kfollowers):

■Deep-Learning(167Kfollowers):

■Natural-Language-Processing(155Kfollowers):

■Classification-machine-learning(119Kfollowers):

■Artificial-General-Intelligence(82Kfollowers)

■Convolutional-Neural-Networks-CNNs(25Kfollowers):

■Computational-Linguistics(23Kfollowers):

■Recurrent-Neural-Networks(17.4Kfollowers):

Reddit

■/r/MachineLearning(111Kreaders):

■/r/robotics/(43Kreaders):

■/r/artificial(35Kreaders):

■/r/datascience(34Kreaders):

■/r/learnmachinelearning(11Kreaders):

■/r/computervision(11Kreaders):

■/r/MLQuestions(8Kreaders):

■/r/LanguageTechnology(7Kreaders):

■/r/mlclass(4Kreaders):

■/r/mlpapers(4Kreaders):

Github

人工智能领域最令人激动的原因之一是大多数项目都是开源的,而且可以通过Github获得。如果你需要一些Python或JupyterNotebooks实现的示例算法,在Github上有大量的这类教育资源。

■MachineLearning(6Krepos):

■DeepLearning(3Krepos):

■Tensorflow(2Krepos):

■NeuralNetwork(1Krepos):

■NLP(1Krepos):

播客

■ConcerningAI

■ThisWeekinMachineLearningandAI

■TheAIPodcast

■DataSkeptic

■LinearDigressions

■PartiallyDervative

■O'ReillyDataShow

■LearningMachines101

■TheTalkingMachines

■ArtificialIntelligenceinIndustry

■MachineLearningGuide

时事通讯媒体

如果你想了解最新的业界消息和学术进展,这里有大量的时事通讯媒体供你选择。

■TheExponentialView:

■AIWeekly:

■DeepHunt:

■O’ReillyArtificialIntelligenceNewsletter:

■MachineLearningWeekly:

■DataScienceWeeklyNewsletter:

■MachineLearnings:

■ArtificialIntelligenceNews:

■Whentreesfall…:

■WildML:

■InsideAI:

■KurzweilAI:

■ImportAI:

■TheWildWeekinAI:

■DeepLearningWeekly:

■DataScienceWeekly:

■KDnuggetsNewsletter:

会议

——学术会议

■NIPS(NeuralInformationProcessingSystems):

■ICML(InternationalConferenceonMachineLearning):

■KDD(KnowledgeDiscoveryandDataMining):

■ICLR(InternationalConferenceonLearningRepresentations):

ACL(AssociationforComputationalLinguistics):

■EMNLP(EmpiricalMethodsinNaturalLanguageProcessing):

■CVPR(ComputerVisionandPatternRecognition):

■ICCF(InternationalConferenceonComputerVision):

——专业会议

■O’ReillyArtificialIntelligenceConference:

■MachineLearningConference(MLConf):

■AIExpo(NorthAmerica,Europe,World):

■AISummit:

■AIConference:

论文

——arXiv.org上特定领域论文集

■ArtificialIntelligence:

■Learning(ComputerScience):

■MachineLearning(Stats):

■NLP:

■ComputerVision:

——SemanticScholar搜索结果

■NeuralNetworks(179Kresults):

■MachineLearning(94Kresults):

■NaturalLanguage(62Kresults):

■ComputerVision(55Kresults):

■DeepLearning(24Kresults):

此外,一个很好的资源是AndrejKarpathy维护的一个用于搜索论文的项目。

THE END
1.XinmingWuteachingIn this course, we learn the basic concepts of artificial intelligence (AI) and its applications in Geosciences. The course coves 1) mathematic fundamentals of neural networks; 2) AI software platforms (Python, Jupyter, Tensorflow/Keras, cloud computing); 3) classic machine learning classifiers; http://cig.ustc.edu.cn/teaching/list.htm
2.2022机器学习好网站大收藏机器学习网站翻译各种外文书籍,与机器学习相关的目录主要有:数据科学、人工智能、datawhale等。 《ApacheCN 人工智能知识树》,《aiLearning》都是不错的学习材料模块。 【dataWhale】:http://www.datawhale.club/ Datawhale发展于2018年12月6日。 团队成员规模在不断扩大,有来自双非院校的优秀同学,也有来自上交、武大、清华等名校https://blog.csdn.net/ywj_1991/article/details/126950662
3.machinelearningmastery免费在线学习机器学习,从基础到高级Below is the 3 step process that you can use to get up-to-speed with statistical methods for machine learning, fast. Step 1: Discover what Statistical Methods are. What is Statistics (and why is it important in machine learning)? http://machinelearningmastery.com/start-here/
4.MachineLearningMastery官网,免费在线学习机器学习,从基础到高级MachineLearningMastery 免费在线学习机器学习,从基础到高级 免费在线学习机器学习,从基础到高级https://ai.itotii.com/sites/919.html
5.MachineLearningMasteryAI学习网站1345 337 0 上周最热排名:347 工具标签: # AI学习网站 直达网站 手机访问 工具描述 免费在线学习机器学习,从基础到高级https://www.aitop100.cn/tools/detail/1742.html
6.机器学习实战(MachineLearninginAction).pdf(最下方有相应链接) — 对于帮忙转发 MachineLearning(机器学习) 学习路线图 的 朋友,可以加群后私聊 瑶妹 企鹅 赠送 《机器学习实战》百度云 本文档使用 书栈(BookStack.CN) 构建 - 4 - 阅前必读 视频一套,谢谢 第一部分 分类 1.) 机器学习基础 机器学习实战-复习版(问题汇总) 2.) k-近邻算法 3.) https://m.book118.com/html/2022/0722/8133116143004121.shtm
7.Hicate/AiLearning:AiLearning:机器学习AiLearning: 机器学习 - MachineLearning - ML、深度学习 - DeepLearning - DL、自然语言处理 NLP - Hicate/AiLearninghttps://github.com/Hicate/AiLearning
8.JournalofMachineLearningResearchRLtools: A Fast, Portable Deep Reinforcement Learning Library for Continuous Control Jonas Eschmann, Dario Albani, Giuseppe Loianno, 2024. (Machine Learning Open Source Software Paper) [abs][pdf][bib] [code] White-Box Transformers via Sparse Rate Reduction: Compression Is All There Is? Yaodong https://www.jmlr.org/
9.二最新多智能体强化学习文章如何查阅{顶会:AAAIICML}13.最新多智能体强化学习方向论文 3.1 ICMLInternational Conference on Machine Learning [1]. Randomized Entity-wise Factorization for Multi-Agent Reinforcement Learning 作者: Shariq Iqbal (University of Southern California) · Christian Schroeder (University of Oxford) · Bei Peng (University of Oxford) ·https://blog.51cto.com/u_15485092/5032977
10.MachineLearningMastery官网,在线ai机器学习平台和资源库,从总的来说,Machine Learning Mastery是一家专注于机器学习和深度学习教育的在线平台,它通过提供综合的学习资源、实践导向的学习方法和实用的技术和应用,帮助学习者掌握机器学习技术并应用于实际问题。无论是初学者还是有一定经验的学习者,都可以从中获得有价值的学习和实践经验。 https://feizhuke.com/sites/machine-learning-mastery.html
11.MachineLearningSubjects: Machine Learning (cs.LG); Computer Vision and Pattern Recognition (cs.CV) [610] arXiv:2412.10354 [pdf, html, other] A Library for Learning Neural Operators Jean Kossaifi, Nikola Kovachki, Zongyi Li, David Pitt, Miguel Liu-Schiaffini, Robert Joseph George, Boris Bonev, Kamyarhttp://arxiv.org/list/cs.LG/recent?skip=608&show=931
12.HomeWe currently maintain 673 datasets as a service to the machine learning community. Here, you can donate and find datasets used by millions of people all around the world! View DatasetsContribute a Dataset Popular Datasets Iris A small classic dataset from Fisher, 1936. One of the earliest knownhttp://archive.ics.uci.edu/
13.不要担心没数据!史上最全数据集网站汇总澎湃号·政务四.预测建模与机器学习数据集 1.UCIMachineLearningRepository ( https://archive.ics.uci.edu/ml/datasets.html ) UCI机器学习库显然是最著名的数据存储库。如果您正在寻找与机器学习存储库相关的数据集,通常是首选的地方。这些数据集包括了各种各样的数据集,从像Iris和泰坦尼克这样的流行数据集到最近的贡献,比如空https://www.thepaper.cn/newsDetail_forward_3853956
14.scikitlearn:machinelearninginPython—scikitApplications:Improved accuracy via parameter tuning. Algorithms:Grid search,cross validation,metrics, andmore Examples Preprocessing Feature extraction and normalization. Applications:Transforming input data such as text for use with machine learning algorithms. http://scikit-learn.org/stable/
15.这是一份超全机器学习&深度学习资源清单(105个AI站点),请收藏Distill(https://distill.pub/): 展示机器学习的最新文章 Google News(https://news.google.com/topics/CAAqIggKIhxDQkFTRHdvSkwyMHZNREZvZVdoZkVnSmxiaWdBUAE?hl=en-US&gl=US&ceid=US%3Aen): Google News Machine learning MIT News(http://news.mit.edu/topic/machine-learning): Machine learning | https://cloud.tencent.com/developer/article/1373217
16.应用机器学习的XGBoost简介·MachineLearningMastery博客原文:https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/ XGBoost 是一种算法库,近年来在应用机器学习和 Kaggle 竞赛中占据统治地位,它专长于处理结构化数据或表格数据。 XGBoost 是为速度和性能而设计的一种梯度提升决策树方法。 http://static.kancloud.cn/apachecn/ml-mastery-zh/1952511
17.DataScience,MachineLearning,AI&AnalyticsHow to Get Addicted to Machine Learning A simple guide for getting hooked to machine learning and building a successful career in the field. ByAbid Ali Awan, KDnuggets Assistant Editor on December 20, 2024 inMachine Learning How to Use Docker for Local Development Environments https://www.kdnuggets.com/
18.MachineLearningMastery——免费在线学习机器学习,从基础到高级免费在线学习机器学习,从基础到高级 网址:Start Here with Machine Learning (machinelearningmastery.com) https://home.designshidai.com/7815.html
19.MachineLearning(Theory)–MachinelearningandlearningMachine Learning (Theory) Machine learning and learning theory research Scroll down to content Posted on4/5/2023 An AI Miracle Malcontent The stark success of OpenAI’sGPT4 modelsurprised me shifting my view from “really good autocomplete” (roughly inline with intuitionshere) to a dialog agenthttp://www.hunch.net/
20.MachineLearning码农集市专业分享IT编程学习资源MachineLearningPt**ul 上传1.31MB 文件格式 zip 数据集很大,请从kaggle下载: 下载training_variants.zip和training_text.zip解压缩,并将这两个解压缩的文件放在同一文件夹的training文件夹中。 项目概况 它是多类(9类)分类问题,分类错误的成本很高。 KPI(关键绩效指标):多类对数丢失和混淆矩阵。 有3个功能: https://www.coder100.com/index/index/content/id/1132800
21.机器学习实战源代码(MachineLearninginAction)机器学习实战源代码及其详细解释 上传者:qq_51320133时间:2024-04-23 斯坦福2014机器学习课程源代码 Andrew Ng开源课程的Octave源码 上传者:hzm8341时间:2016-04-13 机器学习实战-官方git源代码3.x-machinelearninginaction-master 本人已学习,亲测可行。 https://www.iteye.com/resource/wshixinshouaaa-12521815
22.学习FinancialSignalProcessingandMachineLearning【金融信号处理与机器学习】 Financial Signal Processing and Machine Learning (16) 人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。 经管之家是国内活跃的在线教育咨询平台! https://bbs.pinggu.org/jg/kaoyankaobo_kaoyan_4987076_1.html
23.40个机器学习&深度学习最佳资源集合(书籍课程新闻博客论文5. Machine Learning for Trading 简介: 机器学习在交易中的应用 地址: https://www.udacity.com/course/machine-learning-for-trading--ud501 6. Oxford Deep NLP 简介: 牛津大学2017年开设的深度自然语言处理课程 地址: https://github.com/oxford-cs-deepnlp-2017/?ref=bestofml.com https://www.jiqizhixin.com/articles/2019-03-18-2
24.接近(几乎)任何机器学习问题(英文)301正式版.docApproaching(Almost)AnyMachineLearningProblemApproaching(Almost)AnyMachineLearningProblemISBN:978-82-692115-2-81Approaching(Almost)(namesinalphabeticalorder).AakashNainAdityaSoniAndreasMü(Almost)AnyMachineLearningProblemBeforeyoustart,.══════════════════════════════════https://www.taodocs.com/p-960581472.html