2000年早期,RobbieAllen在写一本关于网络和编程的书的时候,深有感触。他发现,互联网很不错,但是资源并不完善。那时候,博客已经开始流行起来。但是,Youtube还不是很普遍,Quora、Twitter和播客同样用者甚少。
在他转向人工智能和机器学习10年过后,局面发生了天翻地覆的变化:网上资源非相当丰富,以至于很多人出现了选择困难,不知道该从哪里开始(和停止)学习!
资源目录:
□知名研究者
□研究机构
□视频课程
□YouTube
□博客
□媒体作家
□书籍
□Quora主题栏
□Github库
□播客
□实事通讯媒体
□会议
□论文
研究者
大多数知名的人工智能研究者在网络上的曝光率还是很高的。下面列举了20位知名学者,以及他们的个人网站链接,维基百科链接,推特主页,Google学术主页,Quora主页。他们中相当一部分人在Reddit或Quora上面参与了问答。
■SebastianThrun
个人官网:
Wikipedia:
Twitter:
GoogleScholar:
Quora:
RedditAMA:
■YannLeCun
■NandodeFreitas
■AndrewNg
■DaphneKoller
QuoraSession:
■AdamCoates
■JürgenSchmidhuber
■GeoffreyHinton
■TerrySejnowski
■MichaelJordan
■PeterNorvig
■YoshuaBengio
■InaGoodfellow
■AndrejKarpathy
■RichardSocher
Interview:
■DemisHassabis
■ChristopherManning
■Fei-FeiLi
TedTalk:
■FranoisChollet
■DanJurafsky
■OrenEtzioni
机构
网络上有大量的知名机构致力于推进人工智能领域的研究和发展。
以下列出的是同时拥有官方网站/博客和推特账号的机构。
■OpenAI
■DeepMind
■GoogleResearch
■AWSAI
■FacebookAIResearch
■MicrosoftResearch
■BaiduResearch
■IntelAI
■AI2
■PartnershiponAI
视频课程
以下列出的是一些免费的视频课程和教程。
■Coursera—MachineLearning(AndrewNg):
■Coursera—NeuralNetworksforMachineLearning(GeoffreyHinton):
■Udacity—IntrotoMachineLearning(SebastianThrun):
■Udacity—MachineLearning(GeorgiaTech):
■Udacity—DeepLearning(VincentVanhoucke):
■MachineLearning(mathematicalmonk):
■PracticalDeepLearningForCoders(JeremyHoward&RachelThomas):
■StanfordCS231n—ConvolutionalNeuralNetworksforVisualRecognition(Winter2016):
■StanfordCS224n—NaturalLanguageProcessingwithDeepLearning(Winter2017):
■OxfordDeepNLP2017(PhilBlunsometal.):
■ReinforcementLearning(DavidSilver):
■PracticalMachineLearningTutorialwithPython(sentdex):
YouTube
以下,我列举了一些YoutTube频道和用户,它们的主要内容是人工智能或者机器学习。这里按照受欢迎程度列举如下:
■sentdex(225Ksubscribers,21Mviews):
■ArtificialIntelligenceA.I.(7Mviews):
■SirajRaval(140Ksubscribers,5Mviews):
■TwoMinutePapers(60Ksubscribers,3.3Mviews):
■DeepLearning.TV(42Ksubscribers,1.7Mviews):
■DataSchool(37Ksubscribers,1.8Mviews):
■MachineLearningRecipeswithJoshGordon(324Kviews):
■ArtificialIntelligence—Topic(10Ksubscribers):
■AllenInstituteforArtificialIntelligence(AI2)(1.6Ksubscribers,69Kviews):
■MachineLearningatBerkeley(634subscribers,48Kviews):
■UnderstandingMachineLearning—ShaiBen-David(973subscribers,43Kviews):
■MachineLearningTV(455subscribers,11Kviews):
博客
■iamtrask
■ChristopherOlah
■TopBots
■WildML
■Distill
■MachineLearningMastery
■FastML
■AdventuresinNI
■SebastianRuder
■UnsupervisedMethods
■Explosion
■TimDettwers
■Whentreesfall...
■ML@B
媒体作家
以下是一些人工智能领域方向顶尖的媒体作家。
■RobbieAllen:
■ErikP.M.Vermeulen:
■FrankChen:
■azeem:
■SamDeBrule:
■DerrickHarris:
■YitaekHwang:
■samim:
■PaulBoutin:
■MariyaYao:
■RobMay:
■AvinashHindupur:
书籍
以下列出的是关于机器学习、深度学习和自然语言处理的书。这些书都是免费的,可以通过网络获取或者下载。
——机器学习
■UnderstandingMachineLearningFromTheorytoAlgorithms:
■MachineLearningYearning:
■ACourseinMachineLearning:
■MachineLearning:
■NeuralNetworksandDeepLearning:
■DeepLearningBook:
■ReinforcementLearning:AnIntroduction:
■ReinforcementLearning:
——自然语言处理
■SpeechandLanguageProcessing(3rded.draft):
■NaturalLanguageProcessingwithPython:
■AnIntroductiontoInformationRetrieval:
——数学
■IntroductiontoStatisticalThought:
■IntroductiontoBayesianStatistics:
■IntroductiontoProbability:
■ThinkStats:ProbabilityandStatisticsforPythonprogrammers:
■TheProbabilityandStatisticsCookbook:
■LinearAlgebra:
■LinearAlgebraDoneWrong:
■LinearAlgebra,TheoryAndApplications:
■MathematicsforComputerScience:
■Calculus:
■CalculusIforComputerScienceandStatisticsStudents:
Quora
■Computer-Science(5.6Mfollowers):
■Machine-Learning(1.1Mfollowers):
■Artificial-Intelligence(635Kfollowers):
■Deep-Learning(167Kfollowers):
■Natural-Language-Processing(155Kfollowers):
■Classification-machine-learning(119Kfollowers):
■Artificial-General-Intelligence(82Kfollowers)
■Convolutional-Neural-Networks-CNNs(25Kfollowers):
■Computational-Linguistics(23Kfollowers):
■Recurrent-Neural-Networks(17.4Kfollowers):
■/r/MachineLearning(111Kreaders):
■/r/robotics/(43Kreaders):
■/r/artificial(35Kreaders):
■/r/datascience(34Kreaders):
■/r/learnmachinelearning(11Kreaders):
■/r/computervision(11Kreaders):
■/r/MLQuestions(8Kreaders):
■/r/LanguageTechnology(7Kreaders):
■/r/mlclass(4Kreaders):
■/r/mlpapers(4Kreaders):
Github
人工智能领域最令人激动的原因之一是大多数项目都是开源的,而且可以通过Github获得。如果你需要一些Python或JupyterNotebooks实现的示例算法,在Github上有大量的这类教育资源。
■MachineLearning(6Krepos):
■DeepLearning(3Krepos):
■Tensorflow(2Krepos):
■NeuralNetwork(1Krepos):
■NLP(1Krepos):
播客
■ConcerningAI
■ThisWeekinMachineLearningandAI
■TheAIPodcast
■DataSkeptic
■LinearDigressions
■PartiallyDervative
■O'ReillyDataShow
■LearningMachines101
■TheTalkingMachines
■ArtificialIntelligenceinIndustry
■MachineLearningGuide
时事通讯媒体
如果你想了解最新的业界消息和学术进展,这里有大量的时事通讯媒体供你选择。
■TheExponentialView:
■AIWeekly:
■DeepHunt:
■O’ReillyArtificialIntelligenceNewsletter:
■MachineLearningWeekly:
■DataScienceWeeklyNewsletter:
■MachineLearnings:
■ArtificialIntelligenceNews:
■Whentreesfall…:
■WildML:
■InsideAI:
■KurzweilAI:
■ImportAI:
■TheWildWeekinAI:
■DeepLearningWeekly:
■DataScienceWeekly:
■KDnuggetsNewsletter:
会议
——学术会议
■NIPS(NeuralInformationProcessingSystems):
■ICML(InternationalConferenceonMachineLearning):
■KDD(KnowledgeDiscoveryandDataMining):
■ICLR(InternationalConferenceonLearningRepresentations):
ACL(AssociationforComputationalLinguistics):
■EMNLP(EmpiricalMethodsinNaturalLanguageProcessing):
■CVPR(ComputerVisionandPatternRecognition):
■ICCF(InternationalConferenceonComputerVision):
——专业会议
■O’ReillyArtificialIntelligenceConference:
■MachineLearningConference(MLConf):
■AIExpo(NorthAmerica,Europe,World):
■AISummit:
■AIConference:
论文
——arXiv.org上特定领域论文集
■ArtificialIntelligence:
■Learning(ComputerScience):
■MachineLearning(Stats):
■NLP:
■ComputerVision:
——SemanticScholar搜索结果
■NeuralNetworks(179Kresults):
■MachineLearning(94Kresults):
■NaturalLanguage(62Kresults):
■ComputerVision(55Kresults):
■DeepLearning(24Kresults):
此外,一个很好的资源是AndrejKarpathy维护的一个用于搜索论文的项目。