火山引擎发布大模型训练云平台:支持万卡训练,集群性能提升3倍

AI大模型技术应用爆发,云市场也在加速变革。

4月18日,火山引擎在其举办的“原动力大会”上发布自研DPU等系列云产品,并推出新版机器学习平台:支持万卡级大模型训练、微秒级延迟网络,让大模型训练更稳更快。火山引擎总裁谭待表示,AI大模型有巨大潜力和创新空间,火山引擎会服务客户做好大模型,共同推动各行业的智能化升级。

“国内有数十家做大模型的企业,大多已经在火山引擎云上”,谭待认为,大模型不会一家独大。与其他云厂商力推自家大模型不同的是,火山引擎将接入多家大模型深度合作,为企业和消费者提供更丰富的AI应用。

会上,火山引擎宣布与字节跳动国内业务并池。基于内外统一的云原生基础架构,抖音等业务的空闲计算资源可极速调度给火山引擎客户使用,离线业务资源分钟级调度10万核CPU,在线业务资源也可潮汐复用,弹性计算抢占式实例的价格最高可优惠80%以上。

让大模型训练快速跑起来

自2022年底发布以来,ChatGPT成为人类历史上最快获得上亿用户的消费级互联网应用。最新的GPT-4大模型,更是在法律、数学、生物学等多项测试中超过90%人类。

谭待表示,国内很多科技公司投入到大模型建设中,不少公司有优秀的技术团队,也有丰富的行业知识和创新想法,但往往缺乏经过大规模场景实践的系统工程能力。火山引擎要做的就是为大模型客户提供高稳定性和高性价比的AI基础设施。

据悉,火山引擎机器学习平台经过抖音等海量用户业务长期打磨,支持单任务万卡级别的超大规模分布式并行训练场景。GPU弹性计算实例可灵活调度资源,随用随取,最高可以为客户节省70%的算力成本。

MiniMax是目前国内少数已经推出自研大模型产品的AI技术公司,拥有文本、视觉、声音三种通用大模型引擎能力。据MiniMax联合创始人杨斌介绍,MiniMax与火山引擎合作建立了超大规模实验平台,实现千卡级常态化训练;超大规模推理平台有万卡级算力池,支撑单日过亿次调用。在火山引擎的云上,MiniMax大模型业务实现快速突破。

谭待透露,火山引擎的大模型云平台获得智谱AI、昆仑万维等众多企业的良好反馈。国内大模型领域,七成以上已是火山引擎客户。

向“多云多模型”架构演进

以数据中心的算力结构为例,谭待表示:“大模型需要大算力,虚拟化会带来资源损耗,规模越大就损耗越多。未来3年内,大规模的算力中心,都将形成‘CPU+GPU+DPU’的混合算力结构,CPU负责通用计算,GPU负责AI计算,DPU负责资源卸载、加速和隔离,提升资源效率”。

此次原动力大会上,火山引擎发布了新一代自研DPU,实现计算、存储、网络的全组件卸载,释放更多资源给业务负载。火山引擎尽管是“最年轻”的云厂商,其自研DPU已达到业界领先水平,网络性能高达5000万pps转发能力、延迟低至20us。基于自研DPU的各类计算实例性能也有显著提升,例如适用于大模型分布式并行训练场景的GPU实例,相较上一代实例集群性能最高提升3倍以上。

自动驾驶公司毫末智行与火山引擎合作打造智算中心,为DriveGPT自动驾驶生成式预训练模型提供强大的算力支持。毫末智行CEO顾维灏介绍,DriveGPT使用量产车4000万公里的人驾数据训练,参数规模达1200亿,对自动驾驶认知决策模型进行持续优化。

谭待表示,在大模型及下游应用发展推动下,无论传统企业还是初创企业,对AI算力都有迫切需求,企业使用多家云服务将成为常态。同时,各行业有自己高质量的私有语料,大模型不会一家独大,而是会在千行百业生长,形成多模型共生甚至协作的生态。“未来将是‘多云多模型’的时代”,谭待称。

火山引擎也顺势推出了分布式云原生平台、多云安全、多云CDN、veStack混合云平台等系列产品,支持客户更好地使用多家云服务。“字节跳动用过全球几乎每一朵公有云,以及大多数CDN,形成一套完整的分布式云管理体系和架构实践”,谭待坚信称火山引擎是最懂多云和分布式云的云服务商,这些技术能力都会毫无保留地提供给客户。

杨震原进一步表示,火山引擎对内对外提供统一的产品,抖音、今日头条等APP开屏都加上了“火山引擎提供计算服务”。杨震原说:“数字化时代,机器学习可以智能、高效地围绕目标解决问题。数字化的下一步是智能化,我们在机器学习方面的技术积累和经验,都会通过火山引擎提供给外部客户,帮助更多企业做好智能化”。

THE END
1.TIOCR训练平台OCR自训练工具OCR建模工具腾讯云 TI 平台 TI-OCR 是一款专注于 OCR 细分场景建模的训练平台,覆盖了从数据导入、数据生成、数据标注、模型训练、应用编排到应用测试发布的全流程。平台沉淀了腾讯优图强大的 OCR 内置模型和专家丰富的模型优化经验,能助力非 AI 专业的客户轻松实现自主构建自定义业务下的 OCR 应用解决方案。 https://cloud.tencent.com/product/tiocr
2.PaddlePaddle/PaddleClas:Atreasurechestforvisual[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。 Twins 系列 [34] 关于Twins 系列模型的精度、速度指标如下表所示,更多介绍可以参考:Twins 系列模型文档。 模型Top-1 AccTop-5 Acctime(ms)bs=1time(ms)bs=4time(ms)bs=8FLOPs(G)Params(M)预训练模型下载地址inference模型下载地https://openi.pcl.ac.cn/PaddlePaddle/PaddleClas/src/branch/develop/docs/zh_CN/models/ImageNet1k
3.机器学习平台面向数据科学家和数据分析人员,为传统机器学习和深度学习提供了从数据准备、数据预处理、模型训练、模型评估到在线预测的端到端数据智能平台。 关于机器学习平台 作为AI赋能工具,面向业务智能化转型的需求,通过自动机器学习、可视化拖拽实验、交互式编码等多种方式,提供从数据洞察处理 、探索性分析、建模分析、模型部署、https://cloud.inspur.com/data-cloud/data-product/machine-learning/
4.Dlearn机器学习平台远舢Dlearn机器学习平台,是集AI算法、模型、训练、推演于一体的“一站式”平台,通过接入模型构建与训练需要的样本数据,构建数据预处理、大规模分布式训练、自动化模型生成及端-边-云模型按需部署能力,支撑AI模型的快速构建、训练、部署和应用,实现AI模型工作流的全周期管理。 https://5gai.cctv.com/special/companies/yuanshan/p002/index.shtml
5.机器学习PAI人人都用得起的机器学习平台机器学习PAI整体介绍 阿里云机器学习PAI包含3个子产品,分别是机器学习可视化开发工具PAI-STUDIO,云端交互式代码开发工具PAI-DSW,模型在线服务PAI-EAS, 3个产品为传统机器学习和深度学习提供了从数据处理、模型训练、服务部署到预测的一站式服务。 产品优势 简单易用 https://umeng.aliyun.com/product/umengpai
6.机器学习平台建设(一)机器学习开发平台的架构本文概述了机器学习平台的构建,强调了数据处理、建模和部署的重要性。数据处理涉及数据采集、存储和加工,包括对接、安全、网络瓶颈、网络爬虫和隐私保护。建模涵盖特征工程、试验、训练和评估模型。部署则关注模型在生产环境中的应用。文章还讨论了数据存储的可靠性、一致性、访问速度和版本控制,以及数据标记和样本数据的创https://blog.csdn.net/2301_81887304/article/details/135616766
7.机器学习青少年人工智能资源与创新平台飞桨大规模分类(PLSC: PaddlePaddle Large Scale Classification)库是基于飞桨平台构建的超大规模分类库,为用户提供从训练到部署的大规模分类问题全流程解决方案 28 04月 机器学习 Transformer 加速工具 TurboTransformers TurboTransformers 来自于深度学习自然语言处理基础平台 TencentNLP Oteam,旨在搭建统一的深度学习https://yuanzhuo.bnu.edu.cn/article/category/ML
8.10个最佳机器学习库开源地理空间基金会中文分会开放地理空间摘要: 机器学习或 ML 由 Arthur Samuel 于 1959 年首次提出,它是人工智能的一部分,赋予机器学习并使其实现自我改进的能力。 通过机器学习,开发人员可以训练机器从自己的经验中学习,而无需显式编程来执行上述操作。为了使用机器学习完成如此多的任务,需 https://www.osgeo.cn/post/181fb
9.适合初学者的一些常用的机器学习库本文主要分享一些常用的人工智能相关的内容,包括:模型训练、数据处理、参数优化、实验跟踪、特定领域库以及一些工具。 在人工智能项目开发的过程中,我们通常会使用到很多机器学习、深度学习框架、各种数据处理库和一些工具。好用的库很多,但对于初学者来说先聚焦在一些比较常用的框架、库或者工具,有利于提高效率。下面主要https://www.51cto.com/article/770983.html
10.如何构建高效的离线机器学习模型训练平台?袋鼠社区在当今数据驱动的时代,机器学习成为了推动各行业创新的重要动力。特别是在离线环境中,构建一个高效的机器学习模型训练平台,不仅可以提高模型的训练效率,还能极大地提升数据安全性和模型的可靠性。本文将深入探讨离线机器学习模型训练平台的构建要点,包括所需的技术、框架、流程及其应用场景,帮助读者全面了解如何打造一个优秀https://www.dtstack.com/bbs/article/15769
11.模型训练平台自训练平台ai数据自训练平台机器学习操作模型训练平台 PRODUCT VALUE 一体化大模型训推 提供大模型微调、优化、部署推理和评测的一体化服务 异源模型统一纳管 一站式大小模型训推 在资源受限或需要快速响应的环境中,提供一站式服务,显著降低模型训练与推理成本 立即咨询 模型量化压缩 立即咨询 Triton引擎推理加速https://www.zkj.com/training
12.机器学习平台机器学习平台是面向机器学习应用开发者,提供开发机、自定义任务、实验管理等丰富的建模调试工具以及多框架高性能推理服务的企业级云原生机器学习平台https://www.volcengine.com/product/ml-platform
13.基于云原生打造分布式机器学习平台(分布式训练篇)在分布式训练过程中,训练的容器次源是由K8S进行调度分配置,工作容器被分布在集群中的哪一台机器使用者是预先不知道的,这样我们就需要有一种介质来存储训练过程中所需要的代码、配置、数据等等,以便于在训练过程中任何一个容器都可以访问它。 在系统框架中已经介绍过了,平台采用的是ceph做为平台的分布式存储,同时与rohttp://cdn.modb.pro/db/474536
14.ScaleAIScale AI是一个基于云端的机器学习标注训练平台,为企业提供高效的数据标注、注释和分类服务,以帮助加速人工智能应用开发。 Scale AI的平台拥有一支专业的标注团队,能够提供高质量的数据标注服务。同时还支持自动化标注和集成API接口等功能,为客户提供一站式的数据处理解决方案。它使用机器学习技术实现数据分类与图像标注,https://www.aizhinan.cn/tools/2337.html
15.阿里云机器学习平台大模型训练框架EPLEPL 是一个统一多种并行策略、易用的分布式深度学习训练框架,它将不同的并行策略进行了统一抽象。在一套分布式训练框架中,支持多种并行策略,包括数据并行、流水并行和算子拆分并行,并支持不同策略的组合和嵌套使用。同时 EPL 提供了灵活应用的接口,用户只需要添加几行代码就可以实现丰富的并行化策略。模型侧不需要去https://blog.itpub.net/70024923/viewspace-2943445/
16.一篇文章读懂什么是机器学习平台这个工程师想用技术减轻人工劳动,他拍摄了约7000张黄瓜照片,传到谷歌云的机器学习平台,通过TensorFlow深度学习框架,训练模型去识别黄瓜,并对黄瓜按不同特质进行分类。在此基础上,他还做了一个黄瓜分拣机,再配合上自动传送带系统,可以将每根黄瓜识别出来后再传送至程序指定的箱子。这样,降低了分拣黄瓜过程中人工参与。https://www.10100.com/article/90094
17.云原生机器学习平台技术综述(编排调度篇)在当前大数据、大模型的背景下,深度学习基础设施平台的架构需要能够满足大规模训练所需的算力、存储和网络,具备强可扩展性的云原生架构是不二之选。本系列文章我们重点关注机器学习平台的技术难点及其在Kubernetes云原生底座之上的解决方案。覆盖编排、调度、存储、通信、推理等方方面面。本文是系列的第一篇:编排调度篇。 https://laiye.com/news/post/2627.html
18.模型训练平台模型训练平台是基于多种机器学习框架开发的人工智能云平台,具有强大的硬件资源管理能力以及高效的模型开发能力,可进行模型开发、分布式训练与服务发布,降低AI使用门槛,提升开发效率,助力车企加速智能化转型。https://www.z-one.tech/products/modeltraining/
19.字节跳动&火山引擎:企业级机器学习平台建设实践现代机器学习系统发展到现在,需要支持从数据管理、特征工程、模型训练,再到模型上线、推理和监控等各种环节,涉及的模块和依赖众多,支撑的业务需求也复杂多变,因此打造一个工程化的机器学习平台对于技术落地至关重要。 字节跳动内部机器学习平台建设演进 字节跳动内部的机器学习平台建设始于 2017 年,那年字节跳动 AI Labhttps://xie.infoq.cn/article/6056428746d7901429d2b8e67?utm_source=related_read_bottom&utm_medium=article
20.Scorpio机器学习平台竹间Scorpio人工智能机器学习平台,具备机器学习全流程开发所需步骤,提供一站式机器自学服务,具有自定义预训练模型、自动化机器学习模型训练等优势,敬请访问【竹间智能】官网.https://www.emotibot.com/product/scorpio.html
21.万象+数据开放平台京东作为多方安全计算中一方进行数据输出,提供丰富的训练数据集。 安全计算 利用混淆电路、不经意传输计算实现数据可用不可见。 数据确权 引用区块链计算对数据的全生命周期流程进行记录。 产品服务 万象+ 多方计算平台 万象+ 机器学习平台 万象+ 多方计算平台 https://dop.jd.com/portal
22.云机器学习建模平台星环科技为您提供云机器学习建模平台相关内容,帮助您快速了解云机器学习建模平台。如果想了解更多云机器学习建模平台资讯,请访问星环科技官网(www.transwarp.cn)查看更多丰富云机器学习建模平台内容。https://www.transwarp.cn/keyword-detail/3821-1
23.机器学习案例实战教学PPT(共20章)第1章常用机器学习平台.pptx目前存在以下几类基本的机器学习平台:一类是开源的机器学习平台,API(Application Programming Interface,应用程序编程接口)丰富且不用付费,但学习成本高,例如 R、Python、Mahout、Spark MLlib等。还有一类是商业化的机器学习平台,这类平台算法有限,但经过了长期的实践检验,系统问题比较少,学习成本低,很少编程甚至不用编程https://max.book118.com/html/2022/0320/8035023063004064.shtm
24.深度学习云训练平台AI智能猜您想看:深度学习云训练平台支持模型开发的数据集,在模型构建或训练、模型管理等各种场景下应用,可快速高效地进行模型的开发和部署。数据集是一种由开发者组成:数据集是物理机器学习的本地用户,一般由多个数据组成。数据集合内所有数据特征在一个界面由数据组成,逻辑数据建模平台提供了数据准备、特征工程、模型https://www.huaweicloud.com/zhishi/edits-17514483.html