计算机五大经典算法是什么常见问题

本教程操作环境:windows10系统、DellG3电脑。

马上要开始投简历找实习了,自己还是毛都不会,慌得一笔,从今天开始每天刷2道以上的leetcode然后总结,并且总结各种面试题的知识点,以后常复习,加油。

在刷leetcode时经常看到有人说DP,然后去百度了DP是个啥,才知道DP是五大经典算法之一,今天开始总结一下五大经典算法。

五大经典算法分为

1、分治法:把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。

2、动态规划法:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。

3、贪心算法:在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。常见的贪心算法有:Prim算法、Kruskal算法(都是求最小生成树的)。

基本思路:将问题分解为若干个小问题,逐渐求得各个子问题的局部最优解,最后合并为原来问题的解。

4、回溯法:回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。深度优先;

回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

5、分支限界法:类似于回溯法,也是一种在问题的解空间树T上搜索问题解的算法。但在一般情况下,分支限界法与回溯法的求解目标不同。回溯法的求解目标是找出T中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。

一、分治法

分治法所能解决的问题一般具有以下几个特征:

1)该问题的规模缩小到一定的程度就可以容易地解决2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。3)利用该问题分解出的子问题的解可以合并为该问题的解;

4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

若不具备第三条特征,可考虑采用动态规划法(DP)或者贪心法。

若不具备第四条特征,可考虑采用动态规划法。

分治法基本步骤:

step1分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;step2解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题

step3合并:将各个子问题的解合并为原问题的解。

二、动态规划法

与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)。

适用条件:

能采用动态规划求解的问题的一般要具有3个性质:

(1)最优化原理:如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。(2)无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关。

(3)有重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到。(该性质并不是动态规划适用的必要条件,但是如果没有这条性质,动态规划算法同其他算法相比就不具备优势)

案例:

有n级台阶,一个人每次上一级或者两级,问有多少种走完n级台阶的方法。分析:动态规划的实现的关键在于能不能准确合理的用动态规划表来抽象出实际问题。在这个问题上,我们让f(n)表示走上n级台阶的方法数。

三、贪心算法

贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,只做出在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。解题的一般步骤是:1.建立数学模型来描述问题;2.把求解的问题分成若干个子问题;3.对每一子问题求解,得到子问题的局部最优解;

4.把子问题的局部最优解合成原来问题的一个解。

例子:钱币找零问题

这个问题在我们的日常生活中就更加普遍了。假设1元、2元、5元、10元、20元、50元、100元的纸币分别有c0,c1,c2,c3,c4,c5,c6张。现在要用这些钱来支付K元,至少要用多少张纸币?用贪心算法的思想,很显然,每一步尽可能用面值大的纸币即可。在日常生活中我们自然而然也是这么做的。在程序中已经事先将Value按照从小到大的顺序排好。

回溯法是一种系统地搜索问题解答的方法。在搜索的过程中尝试找到问题的解,如果发现找不到了,就退一步,往上回溯(剪枝过程)。对于许多复杂问题和大规模问题都可以使用回溯法。回溯法的基本思想是按照深度优先搜索的策略,从根节点开始搜索,当到某个节点时要判断是否是包含问题的解,如果包含就从该节点继续搜索下去,如果不包含,就向父节点回溯。若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

回溯法常用的剪枝函数:(1)约束函数:在节点处减去不满足约束的子树。(2)界限函数:减去得不到最优解的子树。

一般步骤:

1、针对所给问题,确定问题的解空间2、利用适于搜索的方法组织解空间3、利用深度优先搜索解空间

4、在搜索过程中用剪枝函数避免无效搜索。

五、分支限界法

类似于回溯法,也是一种在问题的解空间树T上搜索问题解的算法。但在一般情况下,分支限界法与回溯法的求解目标不同。回溯法的求解目标是找出T中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。

(1)分支搜索算法

所谓“分支”就是采用广度优先的策略,依次搜索E-结点的所有分支,也就是所有相邻结点,抛弃不满足约束条件的结点,其余结点加入活结点表。然后从表中选择一个结点作为下一个E-结点,继续搜索。

选择下一个E-结点的方式不同,则会有几种不同的分支搜索方式。

1)FIFO搜索

2)LIFO搜索

3)优先队列式搜索

(2)分支限界搜索算法

分支限界法的一般过程

由于求解目标不同,导致分支限界法与回溯法在解空间树T上的搜索方式也不相同。回溯法以深度优先的方式搜索解空间树T,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树T。

分支限界法的搜索策略是:在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一个扩展对点。为了有效地选择下一扩展结点,以加速搜索的进程,在每一活结点处,计算一个函数值(限界),并根据这些已计算出的函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间树上有最优解的分支推进,以便尽快地找出一个最优解。

分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。问题的解空间树是表示问题解空间的一棵有序树,常见的有子集树和排列树。在搜索问题的解空间树时,分支限界法与回溯法对当前扩展结点所使用的扩展方式不同。在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,那些导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被子加入活结点表中。此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所求的解或活结点表为空时为止。

回溯法和分支限界法的一些区别

有一些问题其实无论用回溯法还是分支限界法都可以得到很好的解决,但是另外一些则不然。也许我们需要具体一些的分析——到底何时使用分支限界而何时使用回溯呢?

回溯法和分支限界法的一些区别:

方法对解空间树的搜索方式存储结点的常用数据结构结点存储特性常用应用

回溯法深度优先搜索堆栈活结点的所有可行子结点被遍历后才被从栈中弹出找出满足约束条件的所有解

分支限界法广度优先或最小消耗优先搜索队列、优先队列每个结点只有一次成为活结点的机会找出满足约束条件的一个解或特定意义下的最优解

THE END
1.计算机常用算法对照表整理文章浏览阅读1.1w次,点赞5次,收藏45次。常用对照:NLPCRF算法: 中文名称条件随机场算法,外文名称conditional random field algorithm,是一种数学算法,是2001年提出的,基于遵循马尔可夫性的概率图模型。全部对照第一部分、计算机算法常用术语中英对照 Data Structures https://blog.csdn.net/HHTNAN/article/details/76130418
2.10大计算机经典算法「建议收藏」腾讯云开发者社区快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率https://cloud.tencent.com/developer/article/2089934
3.计算机算法有哪些编程:算法的定义是常用算法有本资讯是关于编程:算法的定义是常用算法有相关的内容,由技术百科网为您收集整理请点击查看详情https://www.ultimate-communications.com/zh/system_418763
4.计算机视觉传统算法计算机视觉算法有哪些计算机视觉 传统算法 计算机视觉算法有哪些,1-引言在计算机视觉的发展中,我们的任务也越来越复杂,对于一张图像,我们不仅要实现对于目标的分类问题,还要准确的定位目标所在图片的位置,这个就是目标检测技术。在基于深度学习的目标检测技术中,就不得不提到最著名的三个https://blog.51cto.com/u_16099165/7583044
5.计算机基础知识算法:是指解题方案准确而完整的描述。 算法不等于程序,也不等计算机方法,程序的编制不可能优于算法的设计。 算法的基本特征:是一组严谨地定义运算顺序的规则,每一个规则都是有效的,是明确的,此顺序将在有限的次数下终止。 特征包括: (1)可行性; (2)确定性,算法中每一步骤都必须有明确定义,不允许有模棱两可https://www.oh100.com/kaoshi/yingjian/321869.html
6.自动驾驶领域有哪些岗位可选?汽车行业资讯自动驾驶感知部分是自动驾驶目前最有挑战的部分,其目前的岗位包括:机器学习算法工程师、计算机视觉算法工程师和自然语言处理算法工程师。(这三个方向也属于人工智能的三大方向。) 在自动驾驶车辆中,主要包括:车道线检测、车辆等障碍物检测、可行驶区域检测、红绿灯等交通信息检测、车内语音识别等等,前面讲的SLAM算法其实https://www.auto-testing.net/news/show-109728.html
7.算法概述2、借助有关变量或参数对算法加以表述; 3、将解决问题的过程划分为若干步骤; 4、用简练的语言将这个步骤表示出来. 计算机中算法可分为如下两大类: (1)数值运算算法:求解数值。 (2)非数值运算算法:事务管理领域。 图灵机Turing-machine 英国数学家图灵提出的计算模型, 一个两端无限长的由小格子组成的带子,每个格https://www.jianshu.com/p/8c8d20a9bde8
8.韩信竟是数学大师?中国古代数学启发计算机加密算法晓查 明敏 发自 凹非寺 量子位 报道 | 公众号 QbitAI 没想到,古代韩信点兵的传说,后来竟然启发了计算机加密算法。△韩信是左边那位,不是右边的 相传,https://www.thepaper.cn/newsDetail_forward_14592114
9.研究生个人年终总结(精选14篇)(5)算法设计与分析 计算机专业的重量级必修课,授课老师韩军教授水平很高,澳大利亚邦德大学毕业的,讲课生动有趣,参考书就用的王晓东的《计算机算法设计与分析》。还是按照分治算法、动态规划、分支定界、贪心算法、随机算法、np理论这一套讲下来,也算是又复习了一遍。 https://www.jy135.com/nianzhongzongjie/1358295.html
10.计算机按算法分类有哪些计算机按算法分类有哪些收敛野心 精选回答 算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。算法可以宏泛的分为三类: 1、有限的,确定性算法,这类算法在有限的一段时间内https://edu.iask.sina.com.cn/jy/3pQnxRFSfrf.html
11.一些超实用的JS常用算法详解(推荐!)javascript技巧一些超实用的JS常用算法详解(推荐!)更新时间:2022年10月24日 09:38:17 作者:CRMEB 算法是计算机算法即计算机能够执行的算法,只有明确了算法后,才能使应用程序实现某些功能,所以通常人们会将算法称为程序的灵魂,下面这篇文章主要给大家分享介绍了一些超实用的JS常用算法的相关资料,需要的朋友可以参考下https://www.jb51.net/article/265742.htm
12.Alibaba最新1000多道Java面试题汇总详解,收藏起来慢慢刷!我分享的这份春招 Java 后端开发面试总结包含了 JavaOOP、Java 集合容器、Java 异常、并发编程、Java 反射、Java 序列化、JVM、Redis、Spring MVC、MyBatis、MySQL 数据库、消息中间件 MQ、Dubbo、Linux、ZooKeeper、 分布式 &数据结构与算法等 25 个专题技术点,都是小编在各个大厂总结出来的面试真题,已经有很多粉丝https://maimai.cn/article/detail?fid=1728969401&efid=esjJLvGGL4fAr1LArgq_cQ
13.设计,算法系列,计算机类,设计模式,软件测试,重构优化,等更多分类Hadoop,HeadFirst,Java,Javascript,jvm,Kafka,Linux,Maven,MongoDB,MyBatis,MySQL,Netty,Nginx,Python,RabbitMQ,Redis,Scala,Solr,Spark,Spring,SpringBoot,SpringCloud,TCPIP,Tomcat,Zookeeper,人工智能,大数据类,并发编程,数据库类,数据挖掘,新面试题,架构设计,算法系列,计算机类,设计模式,软件测试,重构优化,等更多https://github.com/congtong/pdf