刘珂:人工智能时代反垄断监管需警惕算法合谋风险

作者:刘珂(暨南大学经济与社会研究院助理教授)

随着人工智能和算法的高速发展,世界各国的反垄断监管面临新的挑战。企业合谋的形式正在由传统意义上的“在烟雾缭绕的房间里”沟通和制定协议转变为通过复杂的算法对价格进行监控和调节。本文将结合国内外的学术研究和案例实践,介绍算法合谋的定义、类型、算法对合谋稳定性的影响以及应对措施。

什么是算法合谋

算法合谋有哪些类型

根据算法在合谋中起到的作用,可以将算法合谋分为四种模式:信使模式、轴辐模式、可预测代理人模式以及电子眼模式。在这四种模式中,算法的作用依次增强,而人类的作用依次减弱。

信使模式(Messenger):算法只是人类实施合谋的媒介,人类才是合谋真正的设计者。算法在使合谋协议生效以及对合谋协议背离的监控和惩罚过程中只起到信使的作用。例如,2015年Topkins被指控和其他竞争者达成协议在亚马逊网上交易平台上提高并维持某些海报的定价。为了实施这一协议,合谋者同意在海报的销售过程中采用某些特定的定价算法,从而对各自价格的变化进行协调。

轴辐模式(HubandSpoke):企业使用单一或相同的算法来进行市场决策。合谋的结果并非是由于企业达成固定价格的协议,而是由于企业同意使用相同的算法。这种模式可以通过不同企业使用相同的第三方定价算法来实现,也可以通过大多数企业模仿某一行业领导者的定价算法来实现。例如,在Uber等网约车平台上,司机不会和乘客进行直接议价,而是使用Uber规定的定价算法达成合谋,而这种算法模拟的价格往往高于市场的真实价格。和信使模式一样,轴辐模式只是应用了新技术的传统合谋形式。

可预测代理人模式(PredictableAgent):每家企业独立开发和使用算法以提高市场透明度和预测行为,在某些市场条件下,不同企业的算法可以达成默契合谋。和之前两种模式不同,在这种模式下,企业并未达成任何协议,也没有明显的将价格固定在某一水平的意愿。每家企业只是出于自身利益开发和依赖于算法,而这会改变某些市场特征,使得企业之间的默契合谋变得更为容易。由于默契合谋不需要企业之间的沟通,各国的反垄断法往往并不认为此类行为是违法的,尽管默契合谋和明示合谋一样会造成不合人意的市场结果。

电子眼模式(DigitalEye):算法的开发者可能没有达成默契合谋的意愿,也无法预测算法是否会导致合谋,而是完全依赖于人工智能。在这一模式中,算法可能只是被设定为以利润最大化为目标,它们通过自主学习和实验来寻求最优的市场策略,从而达成这一目标。和可预测代理人模式一样,电子眼模式不需要企业达成任何协议,且人的主观作用接近于零。

算法会促进合谋吗

那么,算法是否会促进合谋?学术界的主流观点认为答案是肯定的,理由如下:

第一,算法可以提高市场透明度和企业的互动频率。根据经济学理论,合谋的稳定性取决于企业是否有激励通过降价和扩大产量等方式背离合谋协议。更为透明的市场,可以使企业更容易监督彼此是否背离合谋协议,而高互动频率可以使企业更迅速的报复和惩罚这种背离行为。

第二,算法可以降低企业内部的代理成本。通常来说,合谋的形成需要解决企业内部的代理人问题。例如,企业的拥有者无法确定管理者是否站在企业的立场上考虑问题,企业的不同管理层之间存在信息不对称,等等。人工智能通过降低企业内部员工对合谋的参与程度,使合谋被告发的可能性大大降低。

第三,算法可以避免人类的非理性行为。尽管人类的非理性可能体现在算法的开发阶段,但在算法的执行阶段,企业不必担心算法由于担心合谋行为被发现而被监管当局惩罚所带来的恐惧,也不必担心算法在进行价格协调时由于愤怒所导致的过度反应。同时,算法可以避免人类对未来利润的过度折旧,从而提高合谋的稳定性。

第四,算法降低了需求的不确定性,使企业能有效监督彼此是否有背离合谋协议的行为。以价格合谋为例,假定每家企业无法观察到其他企业的历史定价,而只能从销量来推断其他企业是否有背离合谋协议。然而,低销量的原因既有可能是其他企业私自降价,也有可能是行业总需求的下降。如果企业能完美的确定需求,就能完美的从销量推断其他企业的历史定价,从而避免不必要的惩罚。

但也有一些学者认为,算法和人工智能的发展会在一定程度上阻碍合谋。他们的主要观点如下:

第一,算法可以降低进入和退出壁垒。一方面,人工智能可以帮助潜在的市场进入者更容易观察到市场价格和获得超额利润的潜力,从而找到有利的投资机会。另一方面,企业可以更为迅速和低成本的进入市场,并在需要大幅降价的时期(如价格战或需求不景气)离开市场。进入壁垒降低使得市场上企业的数量增加,退出壁垒降低使得对背离合谋协议的企业的惩罚力度降低,这两者都会降低合谋的稳定性。

第二,算法增加了企业合谋需要协调的维度或变量。例如,网络交易平台上一个重要的变量是消费者的反馈和评分,而企业可以通过提交虚假的反馈来操纵自己和其他企业的消费者评分。在这种框架下,企业的合谋不仅要考虑固定价格或产量,也要考虑每家企业如何选择对自己或其他企业提交虚假的反馈(例如,增加积极的反馈和减少消极的反馈以增加行业总需求)。然而,由于反馈是匿名的,即使企业知道某一条反馈是虚假的,也很难知道这条反馈是由哪一家企业提交的。这使得企业有另外一种更为安全的方法背离合谋协议,从而降低了合谋的稳定性。另一方面,人工智能使企业有可能通过获得消费者的信息从而对不同消费者实行个人化定价,从而最大化的剥削消费者剩余,但同时企业在合谋中需要协调的变量几乎是无限的,这大大增加了合谋策略的复杂性。

第三,算法降低了需求的不确定性,使企业有能力挑选背离合谋协议的最佳时机。假定企业能完美的预测需求的波动,则每家企业在需求较为景气的时期有更大的激励去背离合谋协议。这是由于,企业在当期能够获得的利润相对于损失的未来时期的平均利润更高。

算法合谋的应对

第二,通过事前审核,禁止企业使用那些可能造成合谋结果的算法。和人类间的合谋不同,算法合谋所使用的策略往往可以通过算法的程序代码观察到。因此,可以直接通过检查算法的程序代码来确定其是否应该被禁止使用。同时,可以通过输入数据到算法中并监控算法导致的市场结果来决定该算法是否有反竞争的性质。理想的情况是,所有促进合谋的算法都得到禁止,而所有提高市场效率的算法都能够使用。

第三,使用自动化和辅助消费决策的消费算法,实现“用算法击败算法”。这种消费算法可以自动识别需求,搜寻最优的交易机会,并代替消费者执行交易。由于消费算法集中了大量消费者的决策,市场上的交易频率降低,形成一定的买方势力,从而使企业有更大的激励背离合谋协议。同时,当消费算法假定企业有合谋的嫌疑时,可以拒绝消费或改变购买策略。

参考文献:

[1]韩伟.(2017).算法合谋反垄断初探——OECD《算法与合谋》报告介评(上).竞争政策研究,(5),112-121.

[2]韩伟.(2017).算法合谋反垄断初探——OECD《算法与合谋》报告介评(下).竞争政策研究,(6),68-77.

[4]Calvano,E.,Calzolari,G.,Denicolò,V.,&Pastorello,S.(2018).Artificialintelligence,algorithmicpricingandcollusion.

[5]Ezrachi,A.,&Stucke,M.E.(2017).Artificialintelligence&collusion:Whencomputersinhibitcompetition.U.Ill.L.Rev.,1775.

[6]Harrington,J.E.(2018).DevelopingCompetitionLawforCollusionbyAutonomousArtificialAgents.JournalofCompetitionLaw&Economics,14(3),331-363.

[7]Johnson,J.P.,&Sokol,D.D.(2019).UnderstandingAICollusionandCompliance.CambridgeHandbookofCompliance,Forthcoming.

[8]Klein,T.(2018).AssessingAutonomousAlgorithmicCollusion:Q-LearningUnderShort-RunPriceCommitments.TinbergenInstituteDiscussionPaper.

[9]Mehra,S.K.(2015).Antitrustandtherobo-seller:Competitioninthetimeofalgorithms.Minn.L.rev.,100,1323.

[10]Salcedo,B.(2015).Pricingalgorithmsandtacitcollusion.Manuscript,PennsylvaniaStateUniversity.

[11]Schwalbe,U.(2019).Algorithms,machinelearning,andcollusion.JournalofCompetitionLaw&Economics,14(4),568-607.

THE END
1.11.3神经网络模型预测:方法与实践图11.11展示了等价于线性回归,包含四个预测变量的神经网络。这些预测变量对应的系数称为“权重”。响应变量由输入项的线性组合得到。在神经网络框架中,通过使用“学习算法”最小化诸如 MSE 等“损失函数”从而确定权重大小。在这个简单的案例中,我们可以使用线性回归,这是一种更有效的训练模型的方法。https://otexts.com/fppcn/nnetar.html
2.数模干货一篇文章搞定常用预测类数学模型线性回归模型假设预测变量与响应变量之间存在线性关系,通过对现有数据进行拟合,得到预测变量的回归系数,并使用这些系数来预测帆船的上市价格。 机器学习预测 机器学习用于从数据中学习模式和规律,并利用这些知识进行预测。通过训练算法,模型自身调节参数或由使用者进行https://mp.weixin.qq.com/s?__biz=MjM5ODc2Mzk2MA==&mid=2451888956&idx=1&sn=e34fb43776b24ae4b8eb817f7f485574&chksm=b07ad546cc7cd6820802b7e97ceffb6a9f98ae2f8fd5eb4eeadf64334a2fba254940147c4ce8&scene=27
3.人工智能常用的趋势预测算法PK虽然由于数据量的原因以及模型调参上还没有达到最佳的训练结果,但是模型对于趋势预测的有效性已经初步展现。之后,还会对趋势预测算法作进一步的探索和更深层次的研究,相信趋势预测算法在智能运维领域的应用也会更加广泛和可靠。 转载地址:https://https://zhuanlan.zhihu.com/p/143800320
4.4大类11种常见的时间序列预测方法总结和代码示例向量差分指数平滑法是过去观测值的加权平均值,随着观测值变老,权重呈指数会衰减。换句话说,观察时间越近相关权重就越高。它可以快速生成可靠的预测,并且适用于广泛的时间序列。 简单指数平滑:此方法适用于预测没有明确趋势或季节性模式的单变量时间序列数据。简单指数平滑法将下一个时间步建模为先前时间步的观测值的指数加权https://www.163.com/dy/article/H14JVMA00531D9VR.html
5.罗戈网常用的需求预测算法有哪些?常用的需求预测算法有哪些? 定量分析之时间序列典型算法简介 移动平均法 字面意思了,比如计算5月的预测,可以使用2,3,4三个月的实际值取平均值计算5月的预测值,具体使用几个月的移动平均可以具体产品具体确定了;这种算法适合需求没有明显的季节性波动的产品,可以用这个方法过滤掉随机需求波动;这里假设了所有观测值http://adm3.logclub.com/articleInfo/NTYzMTU=
6.数据挖掘中预测算法有哪些帆软数字化转型知识库数据挖掘中预测算法有哪些 在数据挖掘中,常用的预测算法包括线性回归、逻辑回归、决策树、随机森林、支持向量机(SVM)、K近邻算法(KNN)、神经网络、时间序列分析等。其中,线性回归是一种基础且广泛应用的预测算法,通过拟合一条最佳直线来最小化预测值与实际值之间的差异。线性回归的优势在于其计算复杂度低,解释性强,https://www.fanruan.com/blog/article/571900/
7.java使用时序数据预测算法有哪些时序预测的典型算法java使用时序数据预测算法有哪些 时序预测的典型算法 概述: 类似于DeepAR,MQR C NN也是一种可以对批量时间序列统一建模和预测的算法,采用的也是seq2seq模型框架,即encoder-decoder结构。MQR C NN代表MQRNN和MQCNN两个算法,两个算法唯一的不同就是encode部分,MQRNN的encode部分用的是RNN,而MQCNN用的是CNN,更确切https://blog.51cto.com/u_12218/8924556
8.负荷预测的常用算法有哪些?负荷预测的常用算法有哪些? 正确答案:负荷预测算法目前使用的有线性外推法、线性回归法、时间序列法、卡尔曼滤波法、人工神经网络法、灰色系统法和专家系统方法。各种算法均有一定的适用场合,实际中可采取实验比较,选择简单有效的算法。 点击查看答案 你可能感兴趣的试题 单项选择题以下不属于勤工助学的是( ) A、http://www.ppkao.com/wangke/daan/343c339c768049feb08fc2f7892bdea6
9.股票行情分析软件是什么?股票走势预测算法是什么?股票当个股的基本面表现非常好时,股价通常会上涨。当然,这是常态。特殊情况下,还有在高位时,庄家通常也会借助利好消息出货,那样股价就会下跌。当时,其主要原因还是大资金的外流,从而导致股价的下跌。 以上就是关于股票行情分析软件是什么以及股票走势预测算法有哪些的相关信息,希望能够对您有所帮助。https://www.ppdai.com/gl/gupiao/article_446_1.html
10.关于预测的两类核心算法解决函数逼近问题有两类最有效和获得广泛使用的算法:惩罚线性回归和集成方法。本文将介绍这些算法,概述它们的特性,回顾算法性能对比研究的结果,以证明这些算法始终如一的高性能。 1.1 为什么这两类算法如此有用 有几个因素造就了惩罚线性回归和集成方法成为有用的算法集。简单地说,面对实践中遇到的绝大多数预测分析(函https://labs.epubit.com/articleDetails?id=NC7E3EF935950000112A61360D5EE18B5
11.RM圆桌005抢人头要靠自瞄8. 请问自瞄过程中,怎样对目标进行预测,运用到什么策略或算法? 答:2018年的比赛中并没有在预测上做太大的功夫,不过可以尝试一下卡尔曼预测。 9. 请问华工现在采用的是什么视觉方案呢? 答:参考上面回答的一般思路。 10. 视觉算法设计到大量像素运算,为了保证实时性同时不牺牲性能,都有哪些优化方案? https://www.robomaster.com/zh-CN/resource/pages/activities/1009
12.数据挖掘中哪些算法常用于建模和预测?在数据挖掘领域,有许多算法被广泛用于建模和预测。这些算法可以帮助我们从大量的数据中发现模式、关联和趋势,为未来的预测和决策提供依据。下面是一些常用于建模和预测的数据挖掘算法。决策树:决策树是一种常见的分类和回归算法。它通过构建一个树状模型来 https://www.cda.cn/view/204570.html
13.预测方法有哪些预测方法有哪些 预测方法有多种,以下列举几种常见的预测方法: 1.统计方法:通过对历史数据的统计分析和模型建立,来预测未来的趋势或结果。例如,时间序列分析、回归分析等。 2.机器学习方法:利用机器学习算法,通过对大量数据的学习和处理,来预测未来的事件。例如,决策树、随机森林、神经网络等。 3.模拟方法:通过建立https://wenku.baidu.com/view/46e95366bbf67c1cfad6195f312b3169a451eac0.html
14.十大经典预测算法理想股票技术论坛探讨股票领域中最具影响力的十大经典预测算法,帮助投资者了解如何利用数据科学模型预测市场走势,提高投资决策的准确性和效率。 ,理想股票技术论坛https://www.55188.com/tag-7329966.html
15.BAT机器学习面试1000题系列(二)用随机森林等算法预测填充 111.随机森林如何处理缺失值。 方法一(na.roughfix)简单粗暴,对于训练集,同一个class下的数据,如果是分类变量缺失,用众数补上,如果是连续型变量缺失,用中位数补。 方法二(rfImpute)这个方法计算量大,至于比方法一好坏?不好判断。先用na.roughfix补上缺失值,然后构建森林并计算proximity https://www.jianshu.com/p/4a7f7127eef1
16.预测分析方法有哪些?预测分析方法有哪些? 预测分析是一种利用历史数据、统计算法和机器学习技术来预测未来事件的可能结果的方法。预测分析方法可以分为以下几类: 回归分析 回归分析是一种统计方法,用于研究因变量(目标变量)与一个或多个自变量(特征变量)之间的关系。常见的回归分析方法包括线性回归、多元线性回归、逻辑回归、岭回归和LASSOhttps://cloud.tencent.com/developer/techpedia/1550/10434
17.基于聚类和XGboost算法的心脏病预测的三种模型在准确率上确实基本比初始模型要高, 在召回率上L模型和H模型表现的较为优秀. 而F1值也都差别不大. 因为都是使用的同一算法, 所以运行时间上不会有太大的差别. 综合三个数据集所训练的模型数据, 普遍优于初始数据集的模型, 并且有所提升1%~2%. 尤其表现在中等指标的数据集训练模型, 其预测效果是https://c-s-a.org.cn/html/2019/1/6729.html
18.常见的预测算法预测算法有哪些本文介绍了几种常见的机器学习算法,包括线性回归用于连续值预测,逻辑回归处理二元分类,决策树和随机森林解决分类与回归问题,支持向量机用于分类与回归,K近邻是基于邻居的分类方法,神经网络模拟人脑进行预测,贝叶斯分类利用贝叶斯定理进行文本分类,主成分分析用于降维,以及集成学习提升预测准确性。 https://blog.csdn.net/qq_16032927/article/details/129421447
19.神经网络算法RNN实现时间序列预测python这篇文章主要为大家介绍了神经网络算法RNN实现时间序列预测示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪 + 目录 时间序列预测 时间序列是按照时间顺序排列的数据集合,在很多应用中都非常常见。时间序列分析是对这些数据进行分析和预测的过程。时间序列预测是该分析的一个重要组成部分https://www.jb51.net/article/282249.htm
20.新闻浏览要高度重视评价预测算法模型的研究和软件工具的研发应用,要加大全国培训推广力度,提高快速、动态、智能评价能力;四要建实调度指挥系统,按照统筹部署、分工协作、有序推进的新一轮找矿突破部署原则,建立全国找矿突破工作调度指挥平台,提供满足找矿行动规划部署、工作跟踪、信息共享、业务协同的“一站式”工作平台;五要https://www.qhsddj.cn/viewarticle?articleId=3024236
21.一种改进的缺失数据协同过滤推荐算法AETXUE G R等人提出了一种同时基于内容和建模的协同过滤框架,通过平滑算法,预测用户 产品(项目)矩阵中的缺失数据[4]。MA H等人提出综合考虑用户信息和产品(项目)信息来预测缺失数据的方法[5],对协同过滤算法进行了改进。这些方法可以取得比传统协同过滤算法更好的结果,但基于概率或聚类的平滑算法没有区分同一组内用户http://www.chinaaet.com/article/3000052764
22.TCCT通讯Newsletter2017No.01显式模型预测控制的可达分区点定位算法 系统科学与数学, 2016 Vol. 36 (10): 1585-1596 Abstract | PDF 郭宇骞 离散重置系统的前向完备性和稳定性 系统科学与数学, 2016 Vol. 36 (10): 1597-1609 Abstract | PDF 王拥兵 加权有限自动机及其商变换半群 系统科学与数学, 2016 Vol. 36 (10): 1610-161https://tcct.amss.ac.cn/newsletter/2017/201701/journal.html
23.基于5G和人工智能的产品质量实时检测和优化2) 质量预测的智能化 目前,人工智能算法在质量预测模型中的研究成果主要有两个方面:一方面是以产品错误报告为基础,以失效时间作为人工智能网络输入的质量预测模型;另一方面是以质量度量参数作为人工智能网络输入的质量预测模型。 失效时间是指产品从加工完成时至在正常使用状况下失去使用价值时的时间段,是衡量产品质量的http://www.aii-alliance.org/resource/c333/n1807.html